// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_PRIMITIVES_TRANSACTION_H #define BITCOIN_PRIMITIVES_TRANSACTION_H #include "amount.h" #include "script/script.h" #include "serialize.h" #include "uint256.h" static const int SERIALIZE_TRANSACTION_NO_WITNESS = 0x40000000; static const int WITNESS_SCALE_FACTOR = 4; /** An outpoint - a combination of a transaction hash and an index n into its vout */ class COutPoint { public: uint256 hash; uint32_t n; COutPoint() { SetNull(); } COutPoint(uint256 hashIn, uint32_t nIn) { hash = hashIn; n = nIn; } ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { READWRITE(hash); READWRITE(n); } void SetNull() { hash.SetNull(); n = (uint32_t) -1; } bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); } friend bool operator<(const COutPoint& a, const COutPoint& b) { int cmp = a.hash.Compare(b.hash); return cmp < 0 || (cmp == 0 && a.n < b.n); } friend bool operator==(const COutPoint& a, const COutPoint& b) { return (a.hash == b.hash && a.n == b.n); } friend bool operator!=(const COutPoint& a, const COutPoint& b) { return !(a == b); } std::string ToString() const; }; /** An input of a transaction. It contains the location of the previous * transaction's output that it claims and a signature that matches the * output's public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; uint32_t nSequence; /* Setting nSequence to this value for every input in a transaction * disables nLockTime. */ static const uint32_t SEQUENCE_FINAL = 0xffffffff; /* Below flags apply in the context of BIP 68*/ /* If this flag set, CTxIn::nSequence is NOT interpreted as a * relative lock-time. */ static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31); /* If CTxIn::nSequence encodes a relative lock-time and this flag * is set, the relative lock-time has units of 512 seconds, * otherwise it specifies blocks with a granularity of 1. */ static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22); /* If CTxIn::nSequence encodes a relative lock-time, this mask is * applied to extract that lock-time from the sequence field. */ static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff; /* In order to use the same number of bits to encode roughly the * same wall-clock duration, and because blocks are naturally * limited to occur every 600s on average, the minimum granularity * for time-based relative lock-time is fixed at 512 seconds. * Converting from CTxIn::nSequence to seconds is performed by * multiplying by 512 = 2^9, or equivalently shifting up by * 9 bits. */ static const int SEQUENCE_LOCKTIME_GRANULARITY = 9; CTxIn() { nSequence = SEQUENCE_FINAL; } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL); CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { READWRITE(prevout); READWRITE(*(CScriptBase*)(&scriptSig)); READWRITE(nSequence); } friend bool operator==(const CTxIn& a, const CTxIn& b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn& a, const CTxIn& b) { return !(a == b); } std::string ToString() const; }; /** An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: CAmount nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { READWRITE(nValue); READWRITE(*(CScriptBase*)(&scriptPubKey)); } void SetNull() { nValue = -1; scriptPubKey.clear(); } bool IsNull() const { return (nValue == -1); } CAmount GetDustThreshold(const CFeeRate &minRelayTxFee) const { // "Dust" is defined in terms of CTransaction::minRelayTxFee, // which has units satoshis-per-kilobyte. // If you'd pay more than 1/3 in fees // to spend something, then we consider it dust. // A typical spendable non-segwit txout is 34 bytes big, and will // need a CTxIn of at least 148 bytes to spend: // so dust is a spendable txout less than // 546*minRelayTxFee/1000 (in satoshis). // A typical spendable segwit txout is 31 bytes big, and will // need a CTxIn of at least 67 bytes to spend: // so dust is a spendable txout less than // 294*minRelayTxFee/1000 (in satoshis). if (scriptPubKey.IsUnspendable()) return 0; size_t nSize = GetSerializeSize(*this, SER_DISK, 0); int witnessversion = 0; std::vector witnessprogram; if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) { // sum the sizes of the parts of a transaction input // with 75% segwit discount applied to the script size. nSize += (32 + 4 + 1 + (107 / WITNESS_SCALE_FACTOR) + 4); } else { nSize += (32 + 4 + 1 + 107 + 4); // the 148 mentioned above } return 3 * minRelayTxFee.GetFee(nSize); } bool IsDust(const CFeeRate &minRelayTxFee) const { return (nValue < GetDustThreshold(minRelayTxFee)); } friend bool operator==(const CTxOut& a, const CTxOut& b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut& a, const CTxOut& b) { return !(a == b); } std::string ToString() const; }; class CTxInWitness { public: CScriptWitness scriptWitness; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { READWRITE(scriptWitness.stack); } bool IsNull() const { return scriptWitness.IsNull(); } CTxInWitness() { } }; class CTxWitness { public: /** In case vtxinwit is missing, all entries are treated as if they were empty CTxInWitnesses */ std::vector vtxinwit; ADD_SERIALIZE_METHODS; bool IsEmpty() const { return vtxinwit.empty(); } bool IsNull() const { for (size_t n = 0; n < vtxinwit.size(); n++) { if (!vtxinwit[n].IsNull()) { return false; } } return true; } void SetNull() { vtxinwit.clear(); } template inline void SerializationOp(Stream& s, Operation ser_action) { for (size_t n = 0; n < vtxinwit.size(); n++) { READWRITE(vtxinwit[n]); } if (IsNull()) { /* It's illegal to encode a witness when all vtxinwit entries are empty. */ throw std::ios_base::failure("Superfluous witness record"); } } }; struct CMutableTransaction; /** * Basic transaction serialization format: * - int32_t nVersion * - std::vector vin * - std::vector vout * - uint32_t nLockTime * * Extended transaction serialization format: * - int32_t nVersion * - unsigned char dummy = 0x00 * - unsigned char flags (!= 0) * - std::vector vin * - std::vector vout * - if (flags & 1): * - CTxWitness wit; * - uint32_t nLockTime */ template inline void SerializeTransaction(TxType& tx, Stream& s, Operation ser_action) { const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS); READWRITE(*const_cast(&tx.nVersion)); unsigned char flags = 0; if (ser_action.ForRead()) { const_cast*>(&tx.vin)->clear(); const_cast*>(&tx.vout)->clear(); const_cast(&tx.wit)->SetNull(); /* Try to read the vin. In case the dummy is there, this will be read as an empty vector. */ READWRITE(*const_cast*>(&tx.vin)); if (tx.vin.size() == 0 && fAllowWitness) { /* We read a dummy or an empty vin. */ READWRITE(flags); if (flags != 0) { READWRITE(*const_cast*>(&tx.vin)); READWRITE(*const_cast*>(&tx.vout)); } } else { /* We read a non-empty vin. Assume a normal vout follows. */ READWRITE(*const_cast*>(&tx.vout)); } if ((flags & 1) && fAllowWitness) { /* The witness flag is present, and we support witnesses. */ flags ^= 1; const_cast(&tx.wit)->vtxinwit.resize(tx.vin.size()); READWRITE(tx.wit); } if (flags) { /* Unknown flag in the serialization */ throw std::ios_base::failure("Unknown transaction optional data"); } } else { // Consistency check assert(tx.wit.vtxinwit.size() <= tx.vin.size()); if (fAllowWitness) { /* Check whether witnesses need to be serialized. */ if (!tx.wit.IsNull()) { flags |= 1; } } if (flags) { /* Use extended format in case witnesses are to be serialized. */ std::vector vinDummy; READWRITE(vinDummy); READWRITE(flags); } READWRITE(*const_cast*>(&tx.vin)); READWRITE(*const_cast*>(&tx.vout)); if (flags & 1) { const_cast(&tx.wit)->vtxinwit.resize(tx.vin.size()); READWRITE(tx.wit); } } READWRITE(*const_cast(&tx.nLockTime)); } /** The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { private: /** Memory only. */ const uint256 hash; public: // Default transaction version. static const int32_t CURRENT_VERSION=1; // Changing the default transaction version requires a two step process: first // adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date // bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and // MAX_STANDARD_VERSION will be equal. static const int32_t MAX_STANDARD_VERSION=2; // The local variables are made const to prevent unintended modification // without updating the cached hash value. However, CTransaction is not // actually immutable; deserialization and assignment are implemented, // and bypass the constness. This is safe, as they update the entire // structure, including the hash. const int32_t nVersion; const std::vector vin; const std::vector vout; CTxWitness wit; // Not const: can change without invalidating the txid cache const uint32_t nLockTime; /** Construct a CTransaction that qualifies as IsNull() */ CTransaction(); /** Convert a CMutableTransaction into a CTransaction. */ CTransaction(const CMutableTransaction &tx); CTransaction(CMutableTransaction &&tx); CTransaction& operator=(const CTransaction& tx); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { SerializeTransaction(*this, s, ser_action); if (ser_action.ForRead()) { UpdateHash(); } } template CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {} bool IsNull() const { return vin.empty() && vout.empty(); } const uint256& GetHash() const { return hash; } // Compute a hash that includes both transaction and witness data uint256 GetWitnessHash() const; // Return sum of txouts. CAmount GetValueOut() const; // GetValueIn() is a method on CCoinsViewCache, because // inputs must be known to compute value in. // Compute priority, given priority of inputs and (optionally) tx size double ComputePriority(double dPriorityInputs, unsigned int nTxSize=0) const; // Compute modified tx size for priority calculation (optionally given tx size) unsigned int CalculateModifiedSize(unsigned int nTxSize=0) const; /** * Get the total transaction size in bytes, including witness data. * "Total Size" defined in BIP141 and BIP144. * @return Total transaction size in bytes */ unsigned int GetTotalSize() const; bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } friend bool operator==(const CTransaction& a, const CTransaction& b) { return a.hash == b.hash; } friend bool operator!=(const CTransaction& a, const CTransaction& b) { return a.hash != b.hash; } std::string ToString() const; void UpdateHash() const; }; /** A mutable version of CTransaction. */ struct CMutableTransaction { int32_t nVersion; std::vector vin; std::vector vout; CTxWitness wit; uint32_t nLockTime; CMutableTransaction(); CMutableTransaction(const CTransaction& tx); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream& s, Operation ser_action) { SerializeTransaction(*this, s, ser_action); } template CMutableTransaction(deserialize_type, Stream& s) { Unserialize(s); } /** Compute the hash of this CMutableTransaction. This is computed on the * fly, as opposed to GetHash() in CTransaction, which uses a cached result. */ uint256 GetHash() const; }; /** Compute the weight of a transaction, as defined by BIP 141 */ int64_t GetTransactionWeight(const CTransaction &tx); #endif // BITCOIN_PRIMITIVES_TRANSACTION_H