// Copyright (c) 2016-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include RBFTransactionState IsRBFOptIn(const CTransaction& tx, const CTxMemPool& pool) { AssertLockHeld(pool.cs); // First check the transaction itself. if (SignalsOptInRBF(tx)) { return RBFTransactionState::REPLACEABLE_BIP125; } // If this transaction is not in our mempool, then we can't be sure // we will know about all its inputs. if (!pool.exists(GenTxid::Txid(tx.GetHash()))) { return RBFTransactionState::UNKNOWN; } // If all the inputs have nSequence >= maxint-1, it still might be // signaled for RBF if any unconfirmed parents have signaled. const auto& entry{*Assert(pool.GetEntry(tx.GetHash()))}; auto ancestors{pool.AssumeCalculateMemPoolAncestors(__func__, entry, CTxMemPool::Limits::NoLimits(), /*fSearchForParents=*/false)}; for (CTxMemPool::txiter it : ancestors) { if (SignalsOptInRBF(it->GetTx())) { return RBFTransactionState::REPLACEABLE_BIP125; } } return RBFTransactionState::FINAL; } RBFTransactionState IsRBFOptInEmptyMempool(const CTransaction& tx) { // If we don't have a local mempool we can only check the transaction itself. return SignalsOptInRBF(tx) ? RBFTransactionState::REPLACEABLE_BIP125 : RBFTransactionState::UNKNOWN; } std::optional GetEntriesForConflicts(const CTransaction& tx, CTxMemPool& pool, const CTxMemPool::setEntries& iters_conflicting, CTxMemPool::setEntries& all_conflicts) { AssertLockHeld(pool.cs); const uint256 txid = tx.GetHash(); uint64_t nConflictingCount = 0; for (const auto& mi : iters_conflicting) { nConflictingCount += mi->GetCountWithDescendants(); // Rule #5: don't consider replacing more than MAX_REPLACEMENT_CANDIDATES // entries from the mempool. This potentially overestimates the number of actual // descendants (i.e. if multiple conflicts share a descendant, it will be counted multiple // times), but we just want to be conservative to avoid doing too much work. if (nConflictingCount > MAX_REPLACEMENT_CANDIDATES) { return strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n", txid.ToString(), nConflictingCount, MAX_REPLACEMENT_CANDIDATES); } } // Calculate the set of all transactions that would have to be evicted. for (CTxMemPool::txiter it : iters_conflicting) { pool.CalculateDescendants(it, all_conflicts); } return std::nullopt; } std::optional HasNoNewUnconfirmed(const CTransaction& tx, const CTxMemPool& pool, const CTxMemPool::setEntries& iters_conflicting) { AssertLockHeld(pool.cs); std::set parents_of_conflicts; for (const auto& mi : iters_conflicting) { for (const CTxIn& txin : mi->GetTx().vin) { parents_of_conflicts.insert(txin.prevout.hash); } } for (unsigned int j = 0; j < tx.vin.size(); j++) { // Rule #2: We don't want to accept replacements that require low feerate junk to be // mined first. Ideally we'd keep track of the ancestor feerates and make the decision // based on that, but for now requiring all new inputs to be confirmed works. // // Note that if you relax this to make RBF a little more useful, this may break the // CalculateMempoolAncestors RBF relaxation which subtracts the conflict count/size from the // descendant limit. if (!parents_of_conflicts.count(tx.vin[j].prevout.hash)) { // Rather than check the UTXO set - potentially expensive - it's cheaper to just check // if the new input refers to a tx that's in the mempool. if (pool.exists(GenTxid::Txid(tx.vin[j].prevout.hash))) { return strprintf("replacement %s adds unconfirmed input, idx %d", tx.GetHash().ToString(), j); } } } return std::nullopt; } std::optional EntriesAndTxidsDisjoint(const CTxMemPool::setEntries& ancestors, const std::set& direct_conflicts, const uint256& txid) { for (CTxMemPool::txiter ancestorIt : ancestors) { const Txid& hashAncestor = ancestorIt->GetTx().GetHash(); if (direct_conflicts.count(hashAncestor)) { return strprintf("%s spends conflicting transaction %s", txid.ToString(), hashAncestor.ToString()); } } return std::nullopt; } std::optional PaysMoreThanConflicts(const CTxMemPool::setEntries& iters_conflicting, CFeeRate replacement_feerate, const uint256& txid) { for (const auto& mi : iters_conflicting) { // Don't allow the replacement to reduce the feerate of the mempool. // // We usually don't want to accept replacements with lower feerates than what they replaced // as that would lower the feerate of the next block. Requiring that the feerate always be // increased is also an easy-to-reason about way to prevent DoS attacks via replacements. // // We only consider the feerates of transactions being directly replaced, not their indirect // descendants. While that does mean high feerate children are ignored when deciding whether // or not to replace, we do require the replacement to pay more overall fees too, mitigating // most cases. CFeeRate original_feerate(mi->GetModifiedFee(), mi->GetTxSize()); if (replacement_feerate <= original_feerate) { return strprintf("rejecting replacement %s; new feerate %s <= old feerate %s", txid.ToString(), replacement_feerate.ToString(), original_feerate.ToString()); } } return std::nullopt; } std::optional PaysForRBF(CAmount original_fees, CAmount replacement_fees, size_t replacement_vsize, CFeeRate relay_fee, const uint256& txid) { // Rule #3: The replacement fees must be greater than or equal to fees of the // transactions it replaces, otherwise the bandwidth used by those conflicting transactions // would not be paid for. if (replacement_fees < original_fees) { return strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s", txid.ToString(), FormatMoney(replacement_fees), FormatMoney(original_fees)); } // Rule #4: The new transaction must pay for its own bandwidth. Otherwise, we have a DoS // vector where attackers can cause a transaction to be replaced (and relayed) repeatedly by // increasing the fee by tiny amounts. CAmount additional_fees = replacement_fees - original_fees; if (additional_fees < relay_fee.GetFee(replacement_vsize)) { return strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s", txid.ToString(), FormatMoney(additional_fees), FormatMoney(relay_fee.GetFee(replacement_vsize))); } return std::nullopt; } std::optional> ImprovesFeerateDiagram(CTxMemPool& pool, const CTxMemPool::setEntries& direct_conflicts, const CTxMemPool::setEntries& all_conflicts, CAmount replacement_fees, int64_t replacement_vsize) { // Require that the replacement strictly improve the mempool's feerate diagram. std::vector old_diagram, new_diagram; const auto diagram_results{pool.CalculateFeerateDiagramsForRBF(replacement_fees, replacement_vsize, direct_conflicts, all_conflicts)}; if (!diagram_results.has_value()) { return std::make_pair(DiagramCheckError::UNCALCULABLE, util::ErrorString(diagram_results).original); } if (!std::is_gt(CompareFeerateDiagram(diagram_results.value().second, diagram_results.value().first))) { return std::make_pair(DiagramCheckError::FAILURE, "insufficient feerate: does not improve feerate diagram"); } return std::nullopt; }