// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // NOTE: This file is intended to be customised by the end user, and includes only local node policy logic #include #include #include #include CAmount GetDustThreshold(const CTxOut& txout, const CFeeRate& dustRelayFeeIn) { // "Dust" is defined in terms of dustRelayFee, // which has units satoshis-per-kilobyte. // If you'd pay more in fees than the value of the output // to spend something, then we consider it dust. // A typical spendable non-segwit txout is 34 bytes big, and will // need a CTxIn of at least 148 bytes to spend: // so dust is a spendable txout less than // 182*dustRelayFee/1000 (in satoshis). // 546 satoshis at the default rate of 3000 sat/kvB. // A typical spendable segwit P2WPKH txout is 31 bytes big, and will // need a CTxIn of at least 67 bytes to spend: // so dust is a spendable txout less than // 98*dustRelayFee/1000 (in satoshis). // 294 satoshis at the default rate of 3000 sat/kvB. if (txout.scriptPubKey.IsUnspendable()) return 0; size_t nSize = GetSerializeSize(txout); int witnessversion = 0; std::vector witnessprogram; // Note this computation is for spending a Segwit v0 P2WPKH output (a 33 bytes // public key + an ECDSA signature). For Segwit v1 Taproot outputs the minimum // satisfaction is lower (a single BIP340 signature) but this computation was // kept to not further reduce the dust level. // See discussion in https://github.com/bitcoin/bitcoin/pull/22779 for details. if (txout.scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) { // sum the sizes of the parts of a transaction input // with 75% segwit discount applied to the script size. nSize += (32 + 4 + 1 + (107 / WITNESS_SCALE_FACTOR) + 4); } else { nSize += (32 + 4 + 1 + 107 + 4); // the 148 mentioned above } return dustRelayFeeIn.GetFee(nSize); } bool IsDust(const CTxOut& txout, const CFeeRate& dustRelayFeeIn) { return (txout.nValue < GetDustThreshold(txout, dustRelayFeeIn)); } bool IsStandard(const CScript& scriptPubKey, TxoutType& whichType) { std::vector > vSolutions; whichType = Solver(scriptPubKey, vSolutions); if (whichType == TxoutType::NONSTANDARD) { return false; } else if (whichType == TxoutType::MULTISIG) { unsigned char m = vSolutions.front()[0]; unsigned char n = vSolutions.back()[0]; // Support up to x-of-3 multisig txns as standard if (n < 1 || n > 3) return false; if (m < 1 || m > n) return false; } else if (whichType == TxoutType::NULL_DATA && (!fAcceptDatacarrier || scriptPubKey.size() > nMaxDatacarrierBytes)) { return false; } return true; } bool IsStandardTx(const CTransaction& tx, bool permit_bare_multisig, const CFeeRate& dust_relay_fee, std::string& reason) { if (tx.nVersion > TX_MAX_STANDARD_VERSION || tx.nVersion < 1) { reason = "version"; return false; } // Extremely large transactions with lots of inputs can cost the network // almost as much to process as they cost the sender in fees, because // computing signature hashes is O(ninputs*txsize). Limiting transactions // to MAX_STANDARD_TX_WEIGHT mitigates CPU exhaustion attacks. unsigned int sz = GetTransactionWeight(tx); if (sz > MAX_STANDARD_TX_WEIGHT) { reason = "tx-size"; return false; } for (const CTxIn& txin : tx.vin) { // Biggest 'standard' txin involving only keys is a 15-of-15 P2SH // multisig with compressed keys (remember the 520 byte limit on // redeemScript size). That works out to a (15*(33+1))+3=513 byte // redeemScript, 513+1+15*(73+1)+3=1627 bytes of scriptSig, which // we round off to 1650(MAX_STANDARD_SCRIPTSIG_SIZE) bytes for // some minor future-proofing. That's also enough to spend a // 20-of-20 CHECKMULTISIG scriptPubKey, though such a scriptPubKey // is not considered standard. if (txin.scriptSig.size() > MAX_STANDARD_SCRIPTSIG_SIZE) { reason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { reason = "scriptsig-not-pushonly"; return false; } } unsigned int nDataOut = 0; TxoutType whichType; for (const CTxOut& txout : tx.vout) { if (!::IsStandard(txout.scriptPubKey, whichType)) { reason = "scriptpubkey"; return false; } if (whichType == TxoutType::NULL_DATA) nDataOut++; else if ((whichType == TxoutType::MULTISIG) && (!permit_bare_multisig)) { reason = "bare-multisig"; return false; } else if (IsDust(txout, dust_relay_fee)) { reason = "dust"; return false; } } // only one OP_RETURN txout is permitted if (nDataOut > 1) { reason = "multi-op-return"; return false; } return true; } /** * Check transaction inputs to mitigate two * potential denial-of-service attacks: * * 1. scriptSigs with extra data stuffed into them, * not consumed by scriptPubKey (or P2SH script) * 2. P2SH scripts with a crazy number of expensive * CHECKSIG/CHECKMULTISIG operations * * Why bother? To avoid denial-of-service attacks; an attacker * can submit a standard HASH... OP_EQUAL transaction, * which will get accepted into blocks. The redemption * script can be anything; an attacker could use a very * expensive-to-check-upon-redemption script like: * DUP CHECKSIG DROP ... repeated 100 times... OP_1 * * Note that only the non-witness portion of the transaction is checked here. */ bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) { return true; // Coinbases don't use vin normally } for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut& prev = mapInputs.AccessCoin(tx.vin[i].prevout).out; std::vector > vSolutions; TxoutType whichType = Solver(prev.scriptPubKey, vSolutions); if (whichType == TxoutType::NONSTANDARD || whichType == TxoutType::WITNESS_UNKNOWN) { // WITNESS_UNKNOWN failures are typically also caught with a policy // flag in the script interpreter, but it can be helpful to catch // this type of NONSTANDARD transaction earlier in transaction // validation. return false; } else if (whichType == TxoutType::SCRIPTHASH) { std::vector > stack; // convert the scriptSig into a stack, so we can inspect the redeemScript if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE)) return false; if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); if (subscript.GetSigOpCount(true) > MAX_P2SH_SIGOPS) { return false; } } } return true; } bool IsWitnessStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases are skipped for (unsigned int i = 0; i < tx.vin.size(); i++) { // We don't care if witness for this input is empty, since it must not be bloated. // If the script is invalid without witness, it would be caught sooner or later during validation. if (tx.vin[i].scriptWitness.IsNull()) continue; const CTxOut &prev = mapInputs.AccessCoin(tx.vin[i].prevout).out; // get the scriptPubKey corresponding to this input: CScript prevScript = prev.scriptPubKey; bool p2sh = false; if (prevScript.IsPayToScriptHash()) { std::vector > stack; // If the scriptPubKey is P2SH, we try to extract the redeemScript casually by converting the scriptSig // into a stack. We do not check IsPushOnly nor compare the hash as these will be done later anyway. // If the check fails at this stage, we know that this txid must be a bad one. if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE)) return false; if (stack.empty()) return false; prevScript = CScript(stack.back().begin(), stack.back().end()); p2sh = true; } int witnessversion = 0; std::vector witnessprogram; // Non-witness program must not be associated with any witness if (!prevScript.IsWitnessProgram(witnessversion, witnessprogram)) return false; // Check P2WSH standard limits if (witnessversion == 0 && witnessprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE) { if (tx.vin[i].scriptWitness.stack.back().size() > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return false; size_t sizeWitnessStack = tx.vin[i].scriptWitness.stack.size() - 1; if (sizeWitnessStack > MAX_STANDARD_P2WSH_STACK_ITEMS) return false; for (unsigned int j = 0; j < sizeWitnessStack; j++) { if (tx.vin[i].scriptWitness.stack[j].size() > MAX_STANDARD_P2WSH_STACK_ITEM_SIZE) return false; } } // Check policy limits for Taproot spends: // - MAX_STANDARD_TAPSCRIPT_STACK_ITEM_SIZE limit for stack item size // - No annexes if (witnessversion == 1 && witnessprogram.size() == WITNESS_V1_TAPROOT_SIZE && !p2sh) { // Taproot spend (non-P2SH-wrapped, version 1, witness program size 32; see BIP 341) Span stack{tx.vin[i].scriptWitness.stack}; if (stack.size() >= 2 && !stack.back().empty() && stack.back()[0] == ANNEX_TAG) { // Annexes are nonstandard as long as no semantics are defined for them. return false; } if (stack.size() >= 2) { // Script path spend (2 or more stack elements after removing optional annex) const auto& control_block = SpanPopBack(stack); SpanPopBack(stack); // Ignore script if (control_block.empty()) return false; // Empty control block is invalid if ((control_block[0] & TAPROOT_LEAF_MASK) == TAPROOT_LEAF_TAPSCRIPT) { // Leaf version 0xc0 (aka Tapscript, see BIP 342) for (const auto& item : stack) { if (item.size() > MAX_STANDARD_TAPSCRIPT_STACK_ITEM_SIZE) return false; } } } else if (stack.size() == 1) { // Key path spend (1 stack element after removing optional annex) // (no policy rules apply) } else { // 0 stack elements; this is already invalid by consensus rules return false; } } } return true; } int64_t GetVirtualTransactionSize(int64_t nWeight, int64_t nSigOpCost, unsigned int bytes_per_sigop) { return (std::max(nWeight, nSigOpCost * bytes_per_sigop) + WITNESS_SCALE_FACTOR - 1) / WITNESS_SCALE_FACTOR; } int64_t GetVirtualTransactionSize(const CTransaction& tx, int64_t nSigOpCost, unsigned int bytes_per_sigop) { return GetVirtualTransactionSize(GetTransactionWeight(tx), nSigOpCost, bytes_per_sigop); } int64_t GetVirtualTransactionInputSize(const CTxIn& txin, int64_t nSigOpCost, unsigned int bytes_per_sigop) { return GetVirtualTransactionSize(GetTransactionInputWeight(txin), nSigOpCost, bytes_per_sigop); }