// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2017 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // NOTE: This file is intended to be customised by the end user, and includes only local node policy logic #include #include #include #include #include #include #include CAmount GetDustThreshold(const CTxOut& txout, const CFeeRate& dustRelayFeeIn) { // "Dust" is defined in terms of dustRelayFee, // which has units satoshis-per-kilobyte. // If you'd pay more in fees than the value of the output // to spend something, then we consider it dust. // A typical spendable non-segwit txout is 34 bytes big, and will // need a CTxIn of at least 148 bytes to spend: // so dust is a spendable txout less than // 182*dustRelayFee/1000 (in satoshis). // 546 satoshis at the default rate of 3000 sat/kB. // A typical spendable segwit txout is 31 bytes big, and will // need a CTxIn of at least 67 bytes to spend: // so dust is a spendable txout less than // 98*dustRelayFee/1000 (in satoshis). // 294 satoshis at the default rate of 3000 sat/kB. if (txout.scriptPubKey.IsUnspendable()) return 0; size_t nSize = GetSerializeSize(txout, SER_DISK, 0); int witnessversion = 0; std::vector witnessprogram; if (txout.scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) { // sum the sizes of the parts of a transaction input // with 75% segwit discount applied to the script size. nSize += (32 + 4 + 1 + (107 / WITNESS_SCALE_FACTOR) + 4); } else { nSize += (32 + 4 + 1 + 107 + 4); // the 148 mentioned above } return dustRelayFeeIn.GetFee(nSize); } bool IsDust(const CTxOut& txout, const CFeeRate& dustRelayFeeIn) { return (txout.nValue < GetDustThreshold(txout, dustRelayFeeIn)); } bool IsStandard(const CScript& scriptPubKey, txnouttype& whichType, const bool witnessEnabled) { std::vector > vSolutions; if (!Solver(scriptPubKey, whichType, vSolutions)) return false; if (whichType == TX_MULTISIG) { unsigned char m = vSolutions.front()[0]; unsigned char n = vSolutions.back()[0]; // Support up to x-of-3 multisig txns as standard if (n < 1 || n > 3) return false; if (m < 1 || m > n) return false; } else if (whichType == TX_NULL_DATA && (!fAcceptDatacarrier || scriptPubKey.size() > nMaxDatacarrierBytes)) return false; else if (!witnessEnabled && (whichType == TX_WITNESS_V0_KEYHASH || whichType == TX_WITNESS_V0_SCRIPTHASH)) return false; return whichType != TX_NONSTANDARD && whichType != TX_WITNESS_UNKNOWN; } bool IsStandardTx(const CTransaction& tx, std::string& reason, const bool witnessEnabled) { if (tx.nVersion > CTransaction::MAX_STANDARD_VERSION || tx.nVersion < 1) { reason = "version"; return false; } // Extremely large transactions with lots of inputs can cost the network // almost as much to process as they cost the sender in fees, because // computing signature hashes is O(ninputs*txsize). Limiting transactions // to MAX_STANDARD_TX_WEIGHT mitigates CPU exhaustion attacks. unsigned int sz = GetTransactionWeight(tx); if (sz > MAX_STANDARD_TX_WEIGHT) { reason = "tx-size"; return false; } for (const CTxIn& txin : tx.vin) { // Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed // keys (remember the 520 byte limit on redeemScript size). That works // out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)+3=1627 // bytes of scriptSig, which we round off to 1650 bytes for some minor // future-proofing. That's also enough to spend a 20-of-20 // CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not // considered standard. if (txin.scriptSig.size() > 1650) { reason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { reason = "scriptsig-not-pushonly"; return false; } } unsigned int nDataOut = 0; txnouttype whichType; for (const CTxOut& txout : tx.vout) { if (!::IsStandard(txout.scriptPubKey, whichType, witnessEnabled)) { reason = "scriptpubkey"; return false; } if (whichType == TX_NULL_DATA) nDataOut++; else if ((whichType == TX_MULTISIG) && (!fIsBareMultisigStd)) { reason = "bare-multisig"; return false; } else if (IsDust(txout, ::dustRelayFee)) { reason = "dust"; return false; } } // only one OP_RETURN txout is permitted if (nDataOut > 1) { reason = "multi-op-return"; return false; } return true; } /** * Check transaction inputs to mitigate two * potential denial-of-service attacks: * * 1. scriptSigs with extra data stuffed into them, * not consumed by scriptPubKey (or P2SH script) * 2. P2SH scripts with a crazy number of expensive * CHECKSIG/CHECKMULTISIG operations * * Why bother? To avoid denial-of-service attacks; an attacker * can submit a standard HASH... OP_EQUAL transaction, * which will get accepted into blocks. The redemption * script can be anything; an attacker could use a very * expensive-to-check-upon-redemption script like: * DUP CHECKSIG DROP ... repeated 100 times... OP_1 */ bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases don't use vin normally for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut& prev = mapInputs.AccessCoin(tx.vin[i].prevout).out; std::vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; if (whichType == TX_SCRIPTHASH) { std::vector > stack; // convert the scriptSig into a stack, so we can inspect the redeemScript if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE)) return false; if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); if (subscript.GetSigOpCount(true) > MAX_P2SH_SIGOPS) { return false; } } } return true; } bool IsWitnessStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases are skipped for (unsigned int i = 0; i < tx.vin.size(); i++) { // We don't care if witness for this input is empty, since it must not be bloated. // If the script is invalid without witness, it would be caught sooner or later during validation. if (tx.vin[i].scriptWitness.IsNull()) continue; const CTxOut &prev = mapInputs.AccessCoin(tx.vin[i].prevout).out; // get the scriptPubKey corresponding to this input: CScript prevScript = prev.scriptPubKey; if (prevScript.IsPayToScriptHash()) { std::vector > stack; // If the scriptPubKey is P2SH, we try to extract the redeemScript casually by converting the scriptSig // into a stack. We do not check IsPushOnly nor compare the hash as these will be done later anyway. // If the check fails at this stage, we know that this txid must be a bad one. if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE)) return false; if (stack.empty()) return false; prevScript = CScript(stack.back().begin(), stack.back().end()); } int witnessversion = 0; std::vector witnessprogram; // Non-witness program must not be associated with any witness if (!prevScript.IsWitnessProgram(witnessversion, witnessprogram)) return false; // Check P2WSH standard limits if (witnessversion == 0 && witnessprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE) { if (tx.vin[i].scriptWitness.stack.back().size() > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return false; size_t sizeWitnessStack = tx.vin[i].scriptWitness.stack.size() - 1; if (sizeWitnessStack > MAX_STANDARD_P2WSH_STACK_ITEMS) return false; for (unsigned int j = 0; j < sizeWitnessStack; j++) { if (tx.vin[i].scriptWitness.stack[j].size() > MAX_STANDARD_P2WSH_STACK_ITEM_SIZE) return false; } } } return true; } CFeeRate incrementalRelayFee = CFeeRate(DEFAULT_INCREMENTAL_RELAY_FEE); CFeeRate dustRelayFee = CFeeRate(DUST_RELAY_TX_FEE); unsigned int nBytesPerSigOp = DEFAULT_BYTES_PER_SIGOP; int64_t GetVirtualTransactionSize(int64_t nWeight, int64_t nSigOpCost) { return (std::max(nWeight, nSigOpCost * nBytesPerSigOp) + WITNESS_SCALE_FACTOR - 1) / WITNESS_SCALE_FACTOR; } int64_t GetVirtualTransactionSize(const CTransaction& tx, int64_t nSigOpCost) { return GetVirtualTransactionSize(GetTransactionWeight(tx), nSigOpCost); } int64_t GetVirtualTransactionInputSize(const CTxIn& txin, int64_t nSigOpCost) { return GetVirtualTransactionSize(GetTransactionInputWeight(txin), nSigOpCost); }