// Copyright (c) 2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.m_min_ping_time > b.m_min_ping_time; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.m_connected > b.m_connected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; return a.m_connected > b.m_connected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time; if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs; if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; return a.m_connected > b.m_connected; } // Pick out the potential block-relay only peers, and sort them by last block time. static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs; if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; return a.m_connected > b.m_connected; } /** * Sort eviction candidates by network/localhost and connection uptime. * Candidates near the beginning are more likely to be evicted, and those * near the end are more likely to be protected, e.g. less likely to be evicted. * - First, nodes that are not `is_local` and that do not belong to `network`, * sorted by increasing uptime (from most recently connected to connected longer). * - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime. */ struct CompareNodeNetworkTime { const bool m_is_local; const Network m_network; CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {} bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const { if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local; if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network; return a.m_connected > b.m_connected; }; }; //! Sort an array by the specified comparator, then erase the last K elements where predicate is true. template static void EraseLastKElements( std::vector& elements, Comparator comparator, size_t k, std::function predicate = [](const NodeEvictionCandidate& n) { return true; }) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end()); } void ProtectNoBanConnections(std::vector& eviction_candidates) { eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), [](NodeEvictionCandidate const& n) { return n.m_noban; }), eviction_candidates.end()); } void ProtectOutboundConnections(std::vector& eviction_candidates) { eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), [](NodeEvictionCandidate const& n) { return n.m_conn_type != ConnectionType::INBOUND; }), eviction_candidates.end()); } void ProtectEvictionCandidatesByRatio(std::vector& eviction_candidates) { // Protect the half of the remaining nodes which have been connected the longest. // This replicates the non-eviction implicit behavior, and precludes attacks that start later. // To favorise the diversity of our peer connections, reserve up to half of these protected // spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime // overall. This helps protect these higher-latency peers that tend to be otherwise // disadvantaged under our eviction criteria. const size_t initial_size = eviction_candidates.size(); const size_t total_protect_size{initial_size / 2}; // Disadvantaged networks to protect. In the case of equal counts, earlier array members // have the first opportunity to recover unused slots from the previous iteration. struct Net { bool is_local; Network id; size_t count; }; std::array networks{ {{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}}; // Count and store the number of eviction candidates per network. for (Net& n : networks) { n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(), [&n](const NodeEvictionCandidate& c) { return n.is_local ? c.m_is_local : c.m_network == n.id; }); } // Sort `networks` by ascending candidate count, to give networks having fewer candidates // the first opportunity to recover unused protected slots from the previous iteration. std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; }); // Protect up to 25% of the eviction candidates by disadvantaged network. const size_t max_protect_by_network{total_protect_size / 2}; size_t num_protected{0}; while (num_protected < max_protect_by_network) { // Count the number of disadvantaged networks from which we have peers to protect. auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; }); if (num_networks == 0) { break; } const size_t disadvantaged_to_protect{max_protect_by_network - num_protected}; const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast(1))}; // Early exit flag if there are no remaining candidates by disadvantaged network. bool protected_at_least_one{false}; for (Net& n : networks) { if (n.count == 0) continue; const size_t before = eviction_candidates.size(); EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id), protect_per_network, [&n](const NodeEvictionCandidate& c) { return n.is_local ? c.m_is_local : c.m_network == n.id; }); const size_t after = eviction_candidates.size(); if (before > after) { protected_at_least_one = true; const size_t delta{before - after}; num_protected += delta; if (num_protected >= max_protect_by_network) { break; } n.count -= delta; } } if (!protected_at_least_one) { break; } } // Calculate how many we removed, and update our total number of peers that // we want to protect based on uptime accordingly. assert(num_protected == initial_size - eviction_candidates.size()); const size_t remaining_to_protect{total_protect_size - num_protected}; EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect); } [[nodiscard]] std::optional SelectNodeToEvict(std::vector&& vEvictionCandidates) { // Protect connections with certain characteristics ProtectNoBanConnections(vEvictionCandidates); ProtectOutboundConnections(vEvictionCandidates); // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us novel transactions accepted into our mempool. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect up to 8 non-tx-relay peers that have sent us novel blocks. EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8, [](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; }); // Protect 4 nodes that most recently sent us novel blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect some of the remaining eviction candidates by ratios of desirable // or disadvantaged characteristics. ProtectEvictionCandidatesByRatio(vEvictionCandidates); if (vEvictionCandidates.empty()) return std::nullopt; // If any remaining peers are preferred for eviction consider only them. // This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks) // then we probably don't want to evict it no matter what. if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) { vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(), [](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end()); } // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; std::chrono::seconds nMostConnectionsTime{0}; std::map > mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); const auto grouptime{group[0].m_connected}; if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group.size(); nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections return vEvictionCandidates.front().id; }