// Copyright (c) 2011-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace node { std::atomic_bool fImporting(false); std::atomic_bool fReindex(false); bool fHavePruned = false; bool fPruneMode = false; uint64_t nPruneTarget = 0; static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly = false); static FlatFileSeq BlockFileSeq(); static FlatFileSeq UndoFileSeq(); CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const { AssertLockHeld(cs_main); BlockMap::const_iterator it = m_block_index.find(hash); return it == m_block_index.end() ? nullptr : it->second; } CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block) { AssertLockHeld(cs_main); // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator it = m_block_index.find(hash); if (it != m_block_index.end()) { return it->second; } // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(block); // We assign the sequence id to blocks only when the full data is available, // to avoid miners withholding blocks but broadcasting headers, to get a // competitive advantage. pindexNew->nSequenceId = 0; BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock); if (miPrev != m_block_index.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; pindexNew->BuildSkip(); } pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime); pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew); pindexNew->RaiseValidity(BLOCK_VALID_TREE); if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork) pindexBestHeader = pindexNew; m_dirty_blockindex.insert(pindexNew); return pindexNew; } void BlockManager::PruneOneBlockFile(const int fileNumber) { AssertLockHeld(cs_main); LOCK(cs_LastBlockFile); for (const auto& entry : m_block_index) { CBlockIndex* pindex = entry.second; if (pindex->nFile == fileNumber) { pindex->nStatus &= ~BLOCK_HAVE_DATA; pindex->nStatus &= ~BLOCK_HAVE_UNDO; pindex->nFile = 0; pindex->nDataPos = 0; pindex->nUndoPos = 0; m_dirty_blockindex.insert(pindex); // Prune from m_blocks_unlinked -- any block we prune would have // to be downloaded again in order to consider its chain, at which // point it would be considered as a candidate for // m_blocks_unlinked or setBlockIndexCandidates. auto range = m_blocks_unlinked.equal_range(pindex->pprev); while (range.first != range.second) { std::multimap::iterator _it = range.first; range.first++; if (_it->second == pindex) { m_blocks_unlinked.erase(_it); } } } } m_blockfile_info[fileNumber].SetNull(); m_dirty_fileinfo.insert(fileNumber); } void BlockManager::FindFilesToPruneManual(std::set& setFilesToPrune, int nManualPruneHeight, int chain_tip_height) { assert(fPruneMode && nManualPruneHeight > 0); LOCK2(cs_main, cs_LastBlockFile); if (chain_tip_height < 0) { return; } // last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip) unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP); int count = 0; for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) { if (m_blockfile_info[fileNumber].nSize == 0 || m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); setFilesToPrune.insert(fileNumber); count++; } LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count); } void BlockManager::FindFilesToPrune(std::set& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd) { LOCK2(cs_main, cs_LastBlockFile); if (chain_tip_height < 0 || nPruneTarget == 0) { return; } if ((uint64_t)chain_tip_height <= nPruneAfterHeight) { return; } unsigned int nLastBlockWeCanPrune{(unsigned)std::min(prune_height, chain_tip_height - static_cast(MIN_BLOCKS_TO_KEEP))}; uint64_t nCurrentUsage = CalculateCurrentUsage(); // We don't check to prune until after we've allocated new space for files // So we should leave a buffer under our target to account for another allocation // before the next pruning. uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE; uint64_t nBytesToPrune; int count = 0; if (nCurrentUsage + nBuffer >= nPruneTarget) { // On a prune event, the chainstate DB is flushed. // To avoid excessive prune events negating the benefit of high dbcache // values, we should not prune too rapidly. // So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon. if (is_ibd) { // Since this is only relevant during IBD, we use a fixed 10% nBuffer += nPruneTarget / 10; } for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) { nBytesToPrune = m_blockfile_info[fileNumber].nSize + m_blockfile_info[fileNumber].nUndoSize; if (m_blockfile_info[fileNumber].nSize == 0) { continue; } if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target? break; } // don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning if (m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); // Queue up the files for removal setFilesToPrune.insert(fileNumber); nCurrentUsage -= nBytesToPrune; count++; } } LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n", nPruneTarget/1024/1024, nCurrentUsage/1024/1024, ((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024, nLastBlockWeCanPrune, count); } CBlockIndex* BlockManager::InsertBlockIndex(const uint256& hash) { AssertLockHeld(cs_main); if (hash.IsNull()) { return nullptr; } // Return existing BlockMap::iterator mi = m_block_index.find(hash); if (mi != m_block_index.end()) { return (*mi).second; } // Create new CBlockIndex* pindexNew = new CBlockIndex(); mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool BlockManager::LoadBlockIndex( const Consensus::Params& consensus_params, ChainstateManager& chainman) { if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) { return false; } // Calculate nChainWork std::vector> vSortedByHeight; vSortedByHeight.reserve(m_block_index.size()); for (const std::pair& item : m_block_index) { CBlockIndex* pindex = item.second; vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); // Find start of assumed-valid region. int first_assumed_valid_height = std::numeric_limits::max(); for (const auto& [height, block] : vSortedByHeight) { if (block->IsAssumedValid()) { auto chainstates = chainman.GetAll(); // If we encounter an assumed-valid block index entry, ensure that we have // one chainstate that tolerates assumed-valid entries and another that does // not (i.e. the background validation chainstate), since assumed-valid // entries should always be pending validation by a fully-validated chainstate. auto any_chain = [&](auto fnc) { return std::any_of(chainstates.cbegin(), chainstates.cend(), fnc); }; assert(any_chain([](auto chainstate) { return chainstate->reliesOnAssumedValid(); })); assert(any_chain([](auto chainstate) { return !chainstate->reliesOnAssumedValid(); })); first_assumed_valid_height = height; break; } } for (const std::pair& item : vSortedByHeight) { if (ShutdownRequested()) return false; CBlockIndex* pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex); pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime); // We can link the chain of blocks for which we've received transactions at some point, or // blocks that are assumed-valid on the basis of snapshot load (see // PopulateAndValidateSnapshot()). // Pruned nodes may have deleted the block. if (pindex->nTx > 0) { if (pindex->pprev) { if (pindex->pprev->nChainTx > 0) { pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx; } else { pindex->nChainTx = 0; m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex)); } } else { pindex->nChainTx = pindex->nTx; } } if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) { pindex->nStatus |= BLOCK_FAILED_CHILD; m_dirty_blockindex.insert(pindex); } if (pindex->IsAssumedValid() || (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) { // Fill each chainstate's block candidate set. Only add assumed-valid // blocks to the tip candidate set if the chainstate is allowed to rely on // assumed-valid blocks. // // If all setBlockIndexCandidates contained the assumed-valid blocks, the // background chainstate's ActivateBestChain() call would add assumed-valid // blocks to the chain (based on how FindMostWorkChain() works). Obviously // we don't want this since the purpose of the background validation chain // is to validate assued-valid blocks. // // Note: This is considering all blocks whose height is greater or equal to // the first assumed-valid block to be assumed-valid blocks, and excluding // them from the background chainstate's setBlockIndexCandidates set. This // does mean that some blocks which are not technically assumed-valid // (later blocks on a fork beginning before the first assumed-valid block) // might not get added to the background chainstate, but this is ok, // because they will still be attached to the active chainstate if they // actually contain more work. // // Instead of this height-based approach, an earlier attempt was made at // detecting "holistically" whether the block index under consideration // relied on an assumed-valid ancestor, but this proved to be too slow to // be practical. for (CChainState* chainstate : chainman.GetAll()) { if (chainstate->reliesOnAssumedValid() || pindex->nHeight < first_assumed_valid_height) { chainstate->setBlockIndexCandidates.insert(pindex); } } } if (pindex->nStatus & BLOCK_FAILED_MASK && (!chainman.m_best_invalid || pindex->nChainWork > chainman.m_best_invalid->nChainWork)) { chainman.m_best_invalid = pindex; } if (pindex->pprev) { pindex->BuildSkip(); } if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex))) pindexBestHeader = pindex; } return true; } void BlockManager::Unload() { m_blocks_unlinked.clear(); for (const BlockMap::value_type& entry : m_block_index) { delete entry.second; } m_block_index.clear(); m_blockfile_info.clear(); m_last_blockfile = 0; m_dirty_blockindex.clear(); m_dirty_fileinfo.clear(); } bool BlockManager::WriteBlockIndexDB() { AssertLockHeld(::cs_main); std::vector> vFiles; vFiles.reserve(m_dirty_fileinfo.size()); for (std::set::iterator it = m_dirty_fileinfo.begin(); it != m_dirty_fileinfo.end();) { vFiles.push_back(std::make_pair(*it, &m_blockfile_info[*it])); m_dirty_fileinfo.erase(it++); } std::vector vBlocks; vBlocks.reserve(m_dirty_blockindex.size()); for (std::set::iterator it = m_dirty_blockindex.begin(); it != m_dirty_blockindex.end();) { vBlocks.push_back(*it); m_dirty_blockindex.erase(it++); } if (!m_block_tree_db->WriteBatchSync(vFiles, m_last_blockfile, vBlocks)) { return false; } return true; } bool BlockManager::LoadBlockIndexDB(ChainstateManager& chainman) { if (!LoadBlockIndex(::Params().GetConsensus(), chainman)) { return false; } // Load block file info m_block_tree_db->ReadLastBlockFile(m_last_blockfile); m_blockfile_info.resize(m_last_blockfile + 1); LogPrintf("%s: last block file = %i\n", __func__, m_last_blockfile); for (int nFile = 0; nFile <= m_last_blockfile; nFile++) { m_block_tree_db->ReadBlockFileInfo(nFile, m_blockfile_info[nFile]); } LogPrintf("%s: last block file info: %s\n", __func__, m_blockfile_info[m_last_blockfile].ToString()); for (int nFile = m_last_blockfile + 1; true; nFile++) { CBlockFileInfo info; if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) { m_blockfile_info.push_back(info); } else { break; } } // Check presence of blk files LogPrintf("Checking all blk files are present...\n"); std::set setBlkDataFiles; for (const std::pair& item : m_block_index) { CBlockIndex* pindex = item.second; if (pindex->nStatus & BLOCK_HAVE_DATA) { setBlkDataFiles.insert(pindex->nFile); } } for (std::set::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) { FlatFilePos pos(*it, 0); if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) { return false; } } // Check whether we have ever pruned block & undo files m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned); if (fHavePruned) { LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n"); } // Check whether we need to continue reindexing bool fReindexing = false; m_block_tree_db->ReadReindexing(fReindexing); if (fReindexing) fReindex = true; return true; } CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data) { const MapCheckpoints& checkpoints = data.mapCheckpoints; for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints)) { const uint256& hash = i.second; CBlockIndex* pindex = LookupBlockIndex(hash); if (pindex) { return pindex; } } return nullptr; } bool IsBlockPruned(const CBlockIndex* pblockindex) { AssertLockHeld(::cs_main); return (fHavePruned && !(pblockindex->nStatus & BLOCK_HAVE_DATA) && pblockindex->nTx > 0); } // If we're using -prune with -reindex, then delete block files that will be ignored by the // reindex. Since reindexing works by starting at block file 0 and looping until a blockfile // is missing, do the same here to delete any later block files after a gap. Also delete all // rev files since they'll be rewritten by the reindex anyway. This ensures that m_blockfile_info // is in sync with what's actually on disk by the time we start downloading, so that pruning // works correctly. void CleanupBlockRevFiles() { std::map mapBlockFiles; // Glob all blk?????.dat and rev?????.dat files from the blocks directory. // Remove the rev files immediately and insert the blk file paths into an // ordered map keyed by block file index. LogPrintf("Removing unusable blk?????.dat and rev?????.dat files for -reindex with -prune\n"); fs::path blocksdir = gArgs.GetBlocksDirPath(); for (fs::directory_iterator it(blocksdir); it != fs::directory_iterator(); it++) { const std::string path = fs::PathToString(it->path().filename()); if (fs::is_regular_file(*it) && path.length() == 12 && path.substr(8,4) == ".dat") { if (path.substr(0, 3) == "blk") { mapBlockFiles[path.substr(3, 5)] = it->path(); } else if (path.substr(0, 3) == "rev") { remove(it->path()); } } } // Remove all block files that aren't part of a contiguous set starting at // zero by walking the ordered map (keys are block file indices) by // keeping a separate counter. Once we hit a gap (or if 0 doesn't exist) // start removing block files. int nContigCounter = 0; for (const std::pair& item : mapBlockFiles) { if (LocaleIndependentAtoi(item.first) == nContigCounter) { nContigCounter++; continue; } remove(item.second); } } CBlockFileInfo* BlockManager::GetBlockFileInfo(size_t n) { LOCK(cs_LastBlockFile); return &m_blockfile_info.at(n); } static bool UndoWriteToDisk(const CBlockUndo& blockundo, FlatFilePos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart) { // Open history file to append CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { return error("%s: OpenUndoFile failed", __func__); } // Write index header unsigned int nSize = GetSerializeSize(blockundo, fileout.GetVersion()); fileout << messageStart << nSize; // Write undo data long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) { return error("%s: ftell failed", __func__); } pos.nPos = (unsigned int)fileOutPos; fileout << blockundo; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << blockundo; fileout << hasher.GetHash(); return true; } bool UndoReadFromDisk(CBlockUndo& blockundo, const CBlockIndex* pindex) { const FlatFilePos pos{WITH_LOCK(::cs_main, return pindex->GetUndoPos())}; if (pos.IsNull()) { return error("%s: no undo data available", __func__); } // Open history file to read CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("%s: OpenUndoFile failed", __func__); } // Read block uint256 hashChecksum; CHashVerifier verifier(&filein); // We need a CHashVerifier as reserializing may lose data try { verifier << pindex->pprev->GetBlockHash(); verifier >> blockundo; filein >> hashChecksum; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum if (hashChecksum != verifier.GetHash()) { return error("%s: Checksum mismatch", __func__); } return true; } void BlockManager::FlushUndoFile(int block_file, bool finalize) { FlatFilePos undo_pos_old(block_file, m_blockfile_info[block_file].nUndoSize); if (!UndoFileSeq().Flush(undo_pos_old, finalize)) { AbortNode("Flushing undo file to disk failed. This is likely the result of an I/O error."); } } void BlockManager::FlushBlockFile(bool fFinalize, bool finalize_undo) { LOCK(cs_LastBlockFile); FlatFilePos block_pos_old(m_last_blockfile, m_blockfile_info[m_last_blockfile].nSize); if (!BlockFileSeq().Flush(block_pos_old, fFinalize)) { AbortNode("Flushing block file to disk failed. This is likely the result of an I/O error."); } // we do not always flush the undo file, as the chain tip may be lagging behind the incoming blocks, // e.g. during IBD or a sync after a node going offline if (!fFinalize || finalize_undo) FlushUndoFile(m_last_blockfile, finalize_undo); } uint64_t BlockManager::CalculateCurrentUsage() { LOCK(cs_LastBlockFile); uint64_t retval = 0; for (const CBlockFileInfo& file : m_blockfile_info) { retval += file.nSize + file.nUndoSize; } return retval; } void UnlinkPrunedFiles(const std::set& setFilesToPrune) { for (std::set::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) { FlatFilePos pos(*it, 0); fs::remove(BlockFileSeq().FileName(pos)); fs::remove(UndoFileSeq().FileName(pos)); LogPrint(BCLog::BLOCKSTORE, "Prune: %s deleted blk/rev (%05u)\n", __func__, *it); } } static FlatFileSeq BlockFileSeq() { return FlatFileSeq(gArgs.GetBlocksDirPath(), "blk", gArgs.GetBoolArg("-fastprune", false) ? 0x4000 /* 16kb */ : BLOCKFILE_CHUNK_SIZE); } static FlatFileSeq UndoFileSeq() { return FlatFileSeq(gArgs.GetBlocksDirPath(), "rev", UNDOFILE_CHUNK_SIZE); } FILE* OpenBlockFile(const FlatFilePos& pos, bool fReadOnly) { return BlockFileSeq().Open(pos, fReadOnly); } /** Open an undo file (rev?????.dat) */ static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly) { return UndoFileSeq().Open(pos, fReadOnly); } fs::path GetBlockPosFilename(const FlatFilePos& pos) { return BlockFileSeq().FileName(pos); } bool BlockManager::FindBlockPos(FlatFilePos& pos, unsigned int nAddSize, unsigned int nHeight, CChain& active_chain, uint64_t nTime, bool fKnown) { LOCK(cs_LastBlockFile); unsigned int nFile = fKnown ? pos.nFile : m_last_blockfile; if (m_blockfile_info.size() <= nFile) { m_blockfile_info.resize(nFile + 1); } bool finalize_undo = false; if (!fKnown) { while (m_blockfile_info[nFile].nSize + nAddSize >= (gArgs.GetBoolArg("-fastprune", false) ? 0x10000 /* 64kb */ : MAX_BLOCKFILE_SIZE)) { // when the undo file is keeping up with the block file, we want to flush it explicitly // when it is lagging behind (more blocks arrive than are being connected), we let the // undo block write case handle it finalize_undo = (m_blockfile_info[nFile].nHeightLast == (unsigned int)active_chain.Tip()->nHeight); nFile++; if (m_blockfile_info.size() <= nFile) { m_blockfile_info.resize(nFile + 1); } } pos.nFile = nFile; pos.nPos = m_blockfile_info[nFile].nSize; } if ((int)nFile != m_last_blockfile) { if (!fKnown) { LogPrint(BCLog::BLOCKSTORE, "Leaving block file %i: %s\n", m_last_blockfile, m_blockfile_info[m_last_blockfile].ToString()); } FlushBlockFile(!fKnown, finalize_undo); m_last_blockfile = nFile; } m_blockfile_info[nFile].AddBlock(nHeight, nTime); if (fKnown) { m_blockfile_info[nFile].nSize = std::max(pos.nPos + nAddSize, m_blockfile_info[nFile].nSize); } else { m_blockfile_info[nFile].nSize += nAddSize; } if (!fKnown) { bool out_of_space; size_t bytes_allocated = BlockFileSeq().Allocate(pos, nAddSize, out_of_space); if (out_of_space) { return AbortNode("Disk space is too low!", _("Disk space is too low!")); } if (bytes_allocated != 0 && fPruneMode) { m_check_for_pruning = true; } } m_dirty_fileinfo.insert(nFile); return true; } bool BlockManager::FindUndoPos(BlockValidationState& state, int nFile, FlatFilePos& pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); pos.nPos = m_blockfile_info[nFile].nUndoSize; m_blockfile_info[nFile].nUndoSize += nAddSize; m_dirty_fileinfo.insert(nFile); bool out_of_space; size_t bytes_allocated = UndoFileSeq().Allocate(pos, nAddSize, out_of_space); if (out_of_space) { return AbortNode(state, "Disk space is too low!", _("Disk space is too low!")); } if (bytes_allocated != 0 && fPruneMode) { m_check_for_pruning = true; } return true; } static bool WriteBlockToDisk(const CBlock& block, FlatFilePos& pos, const CMessageHeader::MessageStartChars& messageStart) { // Open history file to append CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { return error("WriteBlockToDisk: OpenBlockFile failed"); } // Write index header unsigned int nSize = GetSerializeSize(block, fileout.GetVersion()); fileout << messageStart << nSize; // Write block long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) { return error("WriteBlockToDisk: ftell failed"); } pos.nPos = (unsigned int)fileOutPos; fileout << block; return true; } bool BlockManager::WriteUndoDataForBlock(const CBlockUndo& blockundo, BlockValidationState& state, CBlockIndex* pindex, const CChainParams& chainparams) { AssertLockHeld(::cs_main); // Write undo information to disk if (pindex->GetUndoPos().IsNull()) { FlatFilePos _pos; if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, CLIENT_VERSION) + 40)) { return error("ConnectBlock(): FindUndoPos failed"); } if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart())) { return AbortNode(state, "Failed to write undo data"); } // rev files are written in block height order, whereas blk files are written as blocks come in (often out of order) // we want to flush the rev (undo) file once we've written the last block, which is indicated by the last height // in the block file info as below; note that this does not catch the case where the undo writes are keeping up // with the block writes (usually when a synced up node is getting newly mined blocks) -- this case is caught in // the FindBlockPos function if (_pos.nFile < m_last_blockfile && static_cast(pindex->nHeight) == m_blockfile_info[_pos.nFile].nHeightLast) { FlushUndoFile(_pos.nFile, true); } // update nUndoPos in block index pindex->nUndoPos = _pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; m_dirty_blockindex.insert(pindex); } return true; } bool ReadBlockFromDisk(CBlock& block, const FlatFilePos& pos, const Consensus::Params& consensusParams) { block.SetNull(); // Open history file to read CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString()); } // Read block try { filein >> block; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams)) { return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString()); } // Signet only: check block solution if (consensusParams.signet_blocks && !CheckSignetBlockSolution(block, consensusParams)) { return error("ReadBlockFromDisk: Errors in block solution at %s", pos.ToString()); } return true; } bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams) { const FlatFilePos block_pos{WITH_LOCK(cs_main, return pindex->GetBlockPos())}; if (!ReadBlockFromDisk(block, block_pos, consensusParams)) { return false; } if (block.GetHash() != pindex->GetBlockHash()) { return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s", pindex->ToString(), block_pos.ToString()); } return true; } bool ReadRawBlockFromDisk(std::vector& block, const FlatFilePos& pos, const CMessageHeader::MessageStartChars& message_start) { FlatFilePos hpos = pos; hpos.nPos -= 8; // Seek back 8 bytes for meta header CAutoFile filein(OpenBlockFile(hpos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("%s: OpenBlockFile failed for %s", __func__, pos.ToString()); } try { CMessageHeader::MessageStartChars blk_start; unsigned int blk_size; filein >> blk_start >> blk_size; if (memcmp(blk_start, message_start, CMessageHeader::MESSAGE_START_SIZE)) { return error("%s: Block magic mismatch for %s: %s versus expected %s", __func__, pos.ToString(), HexStr(blk_start), HexStr(message_start)); } if (blk_size > MAX_SIZE) { return error("%s: Block data is larger than maximum deserialization size for %s: %s versus %s", __func__, pos.ToString(), blk_size, MAX_SIZE); } block.resize(blk_size); // Zeroing of memory is intentional here filein.read(MakeWritableByteSpan(block)); } catch (const std::exception& e) { return error("%s: Read from block file failed: %s for %s", __func__, e.what(), pos.ToString()); } return true; } /** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */ FlatFilePos BlockManager::SaveBlockToDisk(const CBlock& block, int nHeight, CChain& active_chain, const CChainParams& chainparams, const FlatFilePos* dbp) { unsigned int nBlockSize = ::GetSerializeSize(block, CLIENT_VERSION); FlatFilePos blockPos; if (dbp != nullptr) { blockPos = *dbp; } if (!FindBlockPos(blockPos, nBlockSize + 8, nHeight, active_chain, block.GetBlockTime(), dbp != nullptr)) { error("%s: FindBlockPos failed", __func__); return FlatFilePos(); } if (dbp == nullptr) { if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) { AbortNode("Failed to write block"); return FlatFilePos(); } } return blockPos; } struct CImportingNow { CImportingNow() { assert(fImporting == false); fImporting = true; } ~CImportingNow() { assert(fImporting == true); fImporting = false; } }; void ThreadImport(ChainstateManager& chainman, std::vector vImportFiles, const ArgsManager& args) { SetSyscallSandboxPolicy(SyscallSandboxPolicy::INITIALIZATION_LOAD_BLOCKS); ScheduleBatchPriority(); { CImportingNow imp; // -reindex if (fReindex) { int nFile = 0; while (true) { FlatFilePos pos(nFile, 0); if (!fs::exists(GetBlockPosFilename(pos))) { break; // No block files left to reindex } FILE* file = OpenBlockFile(pos, true); if (!file) { break; // This error is logged in OpenBlockFile } LogPrintf("Reindexing block file blk%05u.dat...\n", (unsigned int)nFile); chainman.ActiveChainstate().LoadExternalBlockFile(file, &pos); if (ShutdownRequested()) { LogPrintf("Shutdown requested. Exit %s\n", __func__); return; } nFile++; } WITH_LOCK(::cs_main, chainman.m_blockman.m_block_tree_db->WriteReindexing(false)); fReindex = false; LogPrintf("Reindexing finished\n"); // To avoid ending up in a situation without genesis block, re-try initializing (no-op if reindexing worked): chainman.ActiveChainstate().LoadGenesisBlock(); } // -loadblock= for (const fs::path& path : vImportFiles) { FILE* file = fsbridge::fopen(path, "rb"); if (file) { LogPrintf("Importing blocks file %s...\n", fs::PathToString(path)); chainman.ActiveChainstate().LoadExternalBlockFile(file); if (ShutdownRequested()) { LogPrintf("Shutdown requested. Exit %s\n", __func__); return; } } else { LogPrintf("Warning: Could not open blocks file %s\n", fs::PathToString(path)); } } // scan for better chains in the block chain database, that are not yet connected in the active best chain // We can't hold cs_main during ActivateBestChain even though we're accessing // the chainman unique_ptrs since ABC requires us not to be holding cs_main, so retrieve // the relevant pointers before the ABC call. for (CChainState* chainstate : WITH_LOCK(::cs_main, return chainman.GetAll())) { BlockValidationState state; if (!chainstate->ActivateBestChain(state, nullptr)) { LogPrintf("Failed to connect best block (%s)\n", state.ToString()); StartShutdown(); return; } } if (args.GetBoolArg("-stopafterblockimport", DEFAULT_STOPAFTERBLOCKIMPORT)) { LogPrintf("Stopping after block import\n"); StartShutdown(); return; } } // End scope of CImportingNow chainman.ActiveChainstate().LoadMempool(args); } } // namespace node