// Copyright (c) 2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include uint256 NetGroupManager::GetAsmapChecksum() const { if (!m_asmap.size()) return {}; return SerializeHash(m_asmap); } std::vector NetGroupManager::GetGroup(const CNetAddr& address) const { std::vector vchRet; // If non-empty asmap is supplied and the address is IPv4/IPv6, // return ASN to be used for bucketing. uint32_t asn = GetMappedAS(address); if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR). vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket for (int i = 0; i < 4; i++) { vchRet.push_back((asn >> (8 * i)) & 0xFF); } return vchRet; } vchRet.push_back(address.GetNetClass()); int nStartByte{0}; int nBits{0}; if (address.IsLocal()) { // all local addresses belong to the same group } else if (address.IsInternal()) { // All internal-usage addresses get their own group. // Skip over the INTERNAL_IN_IPV6_PREFIX returned by CAddress::GetAddrBytes(). nStartByte = INTERNAL_IN_IPV6_PREFIX.size(); nBits = ADDR_INTERNAL_SIZE * 8; } else if (!address.IsRoutable()) { // all other unroutable addresses belong to the same group } else if (address.HasLinkedIPv4()) { // IPv4 addresses (and mapped IPv4 addresses) use /16 groups uint32_t ipv4 = address.GetLinkedIPv4(); vchRet.push_back((ipv4 >> 24) & 0xFF); vchRet.push_back((ipv4 >> 16) & 0xFF); return vchRet; } else if (address.IsTor() || address.IsI2P()) { nBits = 4; } else if (address.IsCJDNS()) { // Treat in the same way as Tor and I2P because the address in all of // them is "random" bytes (derived from a public key). However in CJDNS // the first byte is a constant 0xfc, so the random bytes come after it. // Thus skip the constant 8 bits at the start. nBits = 12; } else if (address.IsHeNet()) { // for he.net, use /36 groups nBits = 36; } else { // for the rest of the IPv6 network, use /32 groups nBits = 32; } // Push our address onto vchRet. auto addr_bytes = address.GetAddrBytes(); const size_t num_bytes = nBits / 8; vchRet.insert(vchRet.end(), addr_bytes.begin() + nStartByte, addr_bytes.begin() + nStartByte + num_bytes); nBits %= 8; // ...for the last byte, push nBits and for the rest of the byte push 1's if (nBits > 0) { assert(num_bytes < addr_bytes.size()); vchRet.push_back(addr_bytes[num_bytes + nStartByte] | ((1 << (8 - nBits)) - 1)); } return vchRet; } uint32_t NetGroupManager::GetMappedAS(const CNetAddr& address) const { uint32_t net_class = address.GetNetClass(); if (m_asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) { return 0; // Indicates not found, safe because AS0 is reserved per RFC7607. } std::vector ip_bits(128); if (address.HasLinkedIPv4()) { // For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits) for (int8_t byte_i = 0; byte_i < 12; ++byte_i) { for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1; } } uint32_t ipv4 = address.GetLinkedIPv4(); for (int i = 0; i < 32; ++i) { ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1; } } else { // Use all 128 bits of the IPv6 address otherwise assert(address.IsIPv6()); auto addr_bytes = address.GetAddrBytes(); for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { uint8_t cur_byte = addr_bytes[byte_i]; for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; } } } uint32_t mapped_as = Interpret(m_asmap, ip_bits); return mapped_as; }