// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "netbase.h" #include "util.h" #include "sync.h" #ifndef WIN32 #include #endif #include "strlcpy.h" #include // for to_lower() using namespace std; // Settings static proxyType proxyInfo[NET_MAX]; static proxyType nameproxyInfo; static CCriticalSection cs_proxyInfos; int nConnectTimeout = 5000; bool fNameLookup = false; static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff }; enum Network ParseNetwork(std::string net) { boost::to_lower(net); if (net == "ipv4") return NET_IPV4; if (net == "ipv6") return NET_IPV6; if (net == "tor") return NET_TOR; if (net == "i2p") return NET_I2P; return NET_UNROUTABLE; } void SplitHostPort(std::string in, int &portOut, std::string &hostOut) { size_t colon = in.find_last_of(':'); // if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator bool fHaveColon = colon != in.npos; bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos); if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) { char *endp = NULL; int n = strtol(in.c_str() + colon + 1, &endp, 10); if (endp && *endp == 0 && n >= 0) { in = in.substr(0, colon); if (n > 0 && n < 0x10000) portOut = n; } } if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']') hostOut = in.substr(1, in.size()-2); else hostOut = in; } bool static LookupIntern(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { vIP.clear(); { CNetAddr addr; if (addr.SetSpecial(std::string(pszName))) { vIP.push_back(addr); return true; } } struct addrinfo aiHint; memset(&aiHint, 0, sizeof(struct addrinfo)); aiHint.ai_socktype = SOCK_STREAM; aiHint.ai_protocol = IPPROTO_TCP; #ifdef WIN32 # ifdef USE_IPV6 aiHint.ai_family = AF_UNSPEC; # else aiHint.ai_family = AF_INET; # endif aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; #else # ifdef USE_IPV6 aiHint.ai_family = AF_UNSPEC; # else aiHint.ai_family = AF_INET; # endif aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST; #endif struct addrinfo *aiRes = NULL; int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes); if (nErr) return false; struct addrinfo *aiTrav = aiRes; while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) { if (aiTrav->ai_family == AF_INET) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr)); } #ifdef USE_IPV6 if (aiTrav->ai_family == AF_INET6) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr)); } #endif aiTrav = aiTrav->ai_next; } freeaddrinfo(aiRes); return (vIP.size() > 0); } bool LookupHost(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { if (pszName[0] == 0) return false; char psz[256]; char *pszHost = psz; strlcpy(psz, pszName, sizeof(psz)); if (psz[0] == '[' && psz[strlen(psz)-1] == ']') { pszHost = psz+1; psz[strlen(psz)-1] = 0; } return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup); } bool LookupHostNumeric(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions) { return LookupHost(pszName, vIP, nMaxSolutions, false); } bool Lookup(const char *pszName, std::vector& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions) { if (pszName[0] == 0) return false; int port = portDefault; std::string hostname = ""; SplitHostPort(std::string(pszName), port, hostname); std::vector vIP; bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup); if (!fRet) return false; vAddr.resize(vIP.size()); for (unsigned int i = 0; i < vIP.size(); i++) vAddr[i] = CService(vIP[i], port); return true; } bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup) { std::vector vService; bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1); if (!fRet) return false; addr = vService[0]; return true; } bool LookupNumeric(const char *pszName, CService& addr, int portDefault) { return Lookup(pszName, addr, portDefault, false); } bool static Socks4(const CService &addrDest, SOCKET& hSocket) { printf("SOCKS4 connecting %s\n", addrDest.ToString().c_str()); if (!addrDest.IsIPv4()) { closesocket(hSocket); return error("Proxy destination is not IPv4"); } char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user"; struct sockaddr_in addr; socklen_t len = sizeof(addr); if (!addrDest.GetSockAddr((struct sockaddr*)&addr, &len) || addr.sin_family != AF_INET) { closesocket(hSocket); return error("Cannot get proxy destination address"); } memcpy(pszSocks4IP + 2, &addr.sin_port, 2); memcpy(pszSocks4IP + 4, &addr.sin_addr, 4); char* pszSocks4 = pszSocks4IP; int nSize = sizeof(pszSocks4IP); int ret = send(hSocket, pszSocks4, nSize, MSG_NOSIGNAL); if (ret != nSize) { closesocket(hSocket); return error("Error sending to proxy"); } char pchRet[8]; if (recv(hSocket, pchRet, 8, 0) != 8) { closesocket(hSocket); return error("Error reading proxy response"); } if (pchRet[1] != 0x5a) { closesocket(hSocket); if (pchRet[1] != 0x5b) printf("ERROR: Proxy returned error %d\n", pchRet[1]); return false; } printf("SOCKS4 connected %s\n", addrDest.ToString().c_str()); return true; } bool static Socks5(string strDest, int port, SOCKET& hSocket) { printf("SOCKS5 connecting %s\n", strDest.c_str()); if (strDest.size() > 255) { closesocket(hSocket); return error("Hostname too long"); } char pszSocks5Init[] = "\5\1\0"; char *pszSocks5 = pszSocks5Init; ssize_t nSize = sizeof(pszSocks5Init) - 1; ssize_t ret = send(hSocket, pszSocks5, nSize, MSG_NOSIGNAL); if (ret != nSize) { closesocket(hSocket); return error("Error sending to proxy"); } char pchRet1[2]; if (recv(hSocket, pchRet1, 2, 0) != 2) { closesocket(hSocket); return error("Error reading proxy response"); } if (pchRet1[0] != 0x05 || pchRet1[1] != 0x00) { closesocket(hSocket); return error("Proxy failed to initialize"); } string strSocks5("\5\1"); strSocks5 += '\000'; strSocks5 += '\003'; strSocks5 += static_cast(std::min((int)strDest.size(), 255)); strSocks5 += strDest; strSocks5 += static_cast((port >> 8) & 0xFF); strSocks5 += static_cast((port >> 0) & 0xFF); ret = send(hSocket, strSocks5.c_str(), strSocks5.size(), MSG_NOSIGNAL); if (ret != (ssize_t)strSocks5.size()) { closesocket(hSocket); return error("Error sending to proxy"); } char pchRet2[4]; if (recv(hSocket, pchRet2, 4, 0) != 4) { closesocket(hSocket); return error("Error reading proxy response"); } if (pchRet2[0] != 0x05) { closesocket(hSocket); return error("Proxy failed to accept request"); } if (pchRet2[1] != 0x00) { closesocket(hSocket); switch (pchRet2[1]) { case 0x01: return error("Proxy error: general failure"); case 0x02: return error("Proxy error: connection not allowed"); case 0x03: return error("Proxy error: network unreachable"); case 0x04: return error("Proxy error: host unreachable"); case 0x05: return error("Proxy error: connection refused"); case 0x06: return error("Proxy error: TTL expired"); case 0x07: return error("Proxy error: protocol error"); case 0x08: return error("Proxy error: address type not supported"); default: return error("Proxy error: unknown"); } } if (pchRet2[2] != 0x00) { closesocket(hSocket); return error("Error: malformed proxy response"); } char pchRet3[256]; switch (pchRet2[3]) { case 0x01: ret = recv(hSocket, pchRet3, 4, 0) != 4; break; case 0x04: ret = recv(hSocket, pchRet3, 16, 0) != 16; break; case 0x03: { ret = recv(hSocket, pchRet3, 1, 0) != 1; if (ret) return error("Error reading from proxy"); int nRecv = pchRet3[0]; ret = recv(hSocket, pchRet3, nRecv, 0) != nRecv; break; } default: closesocket(hSocket); return error("Error: malformed proxy response"); } if (ret) { closesocket(hSocket); return error("Error reading from proxy"); } if (recv(hSocket, pchRet3, 2, 0) != 2) { closesocket(hSocket); return error("Error reading from proxy"); } printf("SOCKS5 connected %s\n", strDest.c_str()); return true; } bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout) { hSocketRet = INVALID_SOCKET; #ifdef USE_IPV6 struct sockaddr_storage sockaddr; #else struct sockaddr sockaddr; #endif socklen_t len = sizeof(sockaddr); if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { printf("Cannot connect to %s: unsupported network\n", addrConnect.ToString().c_str()); return false; } SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hSocket == INVALID_SOCKET) return false; #ifdef SO_NOSIGPIPE int set = 1; setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int)); #endif #ifdef WIN32 u_long fNonblock = 1; if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR) #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1) #endif { closesocket(hSocket); return false; } if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { // WSAEINVAL is here because some legacy version of winsock uses it if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL) { struct timeval timeout; timeout.tv_sec = nTimeout / 1000; timeout.tv_usec = (nTimeout % 1000) * 1000; fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout); if (nRet == 0) { printf("connection timeout\n"); closesocket(hSocket); return false; } if (nRet == SOCKET_ERROR) { printf("select() for connection failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } socklen_t nRetSize = sizeof(nRet); #ifdef WIN32 if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR) #else if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR) #endif { printf("getsockopt() for connection failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } if (nRet != 0) { printf("connect() failed after select(): %s\n",strerror(nRet)); closesocket(hSocket); return false; } } #ifdef WIN32 else if (WSAGetLastError() != WSAEISCONN) #else else #endif { printf("connect() failed: %i\n",WSAGetLastError()); closesocket(hSocket); return false; } } // this isn't even strictly necessary // CNode::ConnectNode immediately turns the socket back to non-blocking // but we'll turn it back to blocking just in case #ifdef WIN32 fNonblock = 0; if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR) #else fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR) #endif { closesocket(hSocket); return false; } hSocketRet = hSocket; return true; } bool SetProxy(enum Network net, CService addrProxy, int nSocksVersion) { assert(net >= 0 && net < NET_MAX); if (nSocksVersion != 0 && nSocksVersion != 4 && nSocksVersion != 5) return false; if (nSocksVersion != 0 && !addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); proxyInfo[net] = std::make_pair(addrProxy, nSocksVersion); return true; } bool GetProxy(enum Network net, proxyType &proxyInfoOut) { assert(net >= 0 && net < NET_MAX); LOCK(cs_proxyInfos); if (!proxyInfo[net].second) return false; proxyInfoOut = proxyInfo[net]; return true; } bool SetNameProxy(CService addrProxy, int nSocksVersion) { if (nSocksVersion != 0 && nSocksVersion != 5) return false; if (nSocksVersion != 0 && !addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); nameproxyInfo = std::make_pair(addrProxy, nSocksVersion); return true; } bool GetNameProxy(proxyType &nameproxyInfoOut) { LOCK(cs_proxyInfos); if (!nameproxyInfo.second) return false; nameproxyInfoOut = nameproxyInfo; return true; } bool HaveNameProxy() { LOCK(cs_proxyInfos); return nameproxyInfo.second != 0; } bool IsProxy(const CNetAddr &addr) { LOCK(cs_proxyInfos); for (int i = 0; i < NET_MAX; i++) { if (proxyInfo[i].second && (addr == (CNetAddr)proxyInfo[i].first)) return true; } return false; } bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout) { proxyType proxy; // no proxy needed if (!GetProxy(addrDest.GetNetwork(), proxy)) return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout); SOCKET hSocket = INVALID_SOCKET; // first connect to proxy server if (!ConnectSocketDirectly(proxy.first, hSocket, nTimeout)) return false; // do socks negotiation switch (proxy.second) { case 4: if (!Socks4(addrDest, hSocket)) return false; break; case 5: if (!Socks5(addrDest.ToStringIP(), addrDest.GetPort(), hSocket)) return false; break; default: return false; } hSocketRet = hSocket; return true; } bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout) { string strDest; int port = portDefault; SplitHostPort(string(pszDest), port, strDest); SOCKET hSocket = INVALID_SOCKET; proxyType nameproxy; GetNameProxy(nameproxy); CService addrResolved(CNetAddr(strDest, fNameLookup && !nameproxy.second), port); if (addrResolved.IsValid()) { addr = addrResolved; return ConnectSocket(addr, hSocketRet, nTimeout); } addr = CService("0.0.0.0:0"); if (!nameproxy.second) return false; if (!ConnectSocketDirectly(nameproxy.first, hSocket, nTimeout)) return false; switch(nameproxy.second) { default: case 4: return false; case 5: if (!Socks5(strDest, port, hSocket)) return false; break; } hSocketRet = hSocket; return true; } void CNetAddr::Init() { memset(ip, 0, sizeof(ip)); } void CNetAddr::SetIP(const CNetAddr& ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43}; static const unsigned char pchGarliCat[] = {0xFD,0x60,0xDB,0x4D,0xDD,0xB5}; bool CNetAddr::SetSpecial(const std::string &strName) { if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); if (vchAddr.size() != 16-sizeof(pchOnionCat)) return false; memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++) ip[i + sizeof(pchOnionCat)] = vchAddr[i]; return true; } if (strName.size()>11 && strName.substr(strName.size() - 11, 11) == ".oc.b32.i2p") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 11).c_str()); if (vchAddr.size() != 16-sizeof(pchGarliCat)) return false; memcpy(ip, pchOnionCat, sizeof(pchGarliCat)); for (unsigned int i=0; i<16-sizeof(pchGarliCat); i++) ip[i + sizeof(pchGarliCat)] = vchAddr[i]; return true; } return false; } CNetAddr::CNetAddr() { Init(); } CNetAddr::CNetAddr(const struct in_addr& ipv4Addr) { memcpy(ip, pchIPv4, 12); memcpy(ip+12, &ipv4Addr, 4); } #ifdef USE_IPV6 CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr) { memcpy(ip, &ipv6Addr, 16); } #endif CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(pszIp, vIP, 1, fAllowLookup)) *this = vIP[0]; } CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup)) *this = vIP[0]; } unsigned int CNetAddr::GetByte(int n) const { return ip[15-n]; } bool CNetAddr::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CNetAddr::IsIPv6() const { return (!IsIPv4() && !IsTor() && !IsI2P()); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && ( GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CNetAddr::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CNetAddr::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CNetAddr::IsRFC6052() const { static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CNetAddr::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CNetAddr::IsRFC4862() const { static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CNetAddr::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CNetAddr::IsRFC6145() const { static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CNetAddr::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); } bool CNetAddr::IsTor() const { return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); } bool CNetAddr::IsI2P() const { return (memcmp(ip, pchGarliCat, sizeof(pchGarliCat)) == 0); } bool CNetAddr::IsLocal() const { // IPv4 loopback if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) return true; // IPv6 loopback (::1/128) static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; if (memcmp(ip, pchLocal, 16) == 0) return true; return false; } bool CNetAddr::IsMulticast() const { return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0) || (GetByte(15) == 0xFF); } bool CNetAddr::IsValid() const { // Cleanup 3-byte shifted addresses caused by garbage in size field // of addr messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26... // so if the first length field is garbled, it reads the second batch // of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0) return false; // unspecified IPv6 address (::/128) unsigned char ipNone[16] = {}; if (memcmp(ip, ipNone, 16) == 0) return false; // documentation IPv6 address if (IsRFC3849()) return false; if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip+12, &ipNone, 4) == 0) return false; // 0 ipNone = 0; if (memcmp(ip+12, &ipNone, 4) == 0) return false; } return true; } bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || (IsRFC4193() && !IsTor() && !IsI2P()) || IsRFC4843() || IsLocal()); } enum Network CNetAddr::GetNetwork() const { if (!IsRoutable()) return NET_UNROUTABLE; if (IsIPv4()) return NET_IPV4; if (IsTor()) return NET_TOR; if (IsI2P()) return NET_I2P; return NET_IPV6; } std::string CNetAddr::ToStringIP() const { if (IsTor()) return EncodeBase32(&ip[6], 10) + ".onion"; if (IsI2P()) return EncodeBase32(&ip[6], 10) + ".oc.b32.i2p"; CService serv(*this, 0); #ifdef USE_IPV6 struct sockaddr_storage sockaddr; #else struct sockaddr sockaddr; #endif socklen_t socklen = sizeof(sockaddr); if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) { char name[1025] = ""; if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST)) return std::string(name); } if (IsIPv4()) return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); else return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } std::string CNetAddr::ToString() const { return ToStringIP(); } bool operator==(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator!=(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) != 0); } bool operator<(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) < 0); } bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const { if (!IsIPv4()) return false; memcpy(pipv4Addr, ip+12, 4); return true; } #ifdef USE_IPV6 bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const { memcpy(pipv6Addr, ip, 16); return true; } #endif // get canonical identifier of an address' group // no two connections will be attempted to addresses with the same group std::vector CNetAddr::GetGroup() const { std::vector vchRet; int nClass = NET_IPV6; int nStartByte = 0; int nBits = 16; // all local addresses belong to the same group if (IsLocal()) { nClass = 255; nBits = 0; } // all unroutable addresses belong to the same group if (!IsRoutable()) { nClass = NET_UNROUTABLE; nBits = 0; } // for IPv4 addresses, '1' + the 16 higher-order bits of the IP // includes mapped IPv4, SIIT translated IPv4, and the well-known prefix else if (IsIPv4() || IsRFC6145() || IsRFC6052()) { nClass = NET_IPV4; nStartByte = 12; } // for 6to4 tunnelled addresses, use the encapsulated IPv4 address else if (IsRFC3964()) { nClass = NET_IPV4; nStartByte = 2; } // for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address else if (IsRFC4380()) { vchRet.push_back(NET_IPV4); vchRet.push_back(GetByte(3) ^ 0xFF); vchRet.push_back(GetByte(2) ^ 0xFF); return vchRet; } else if (IsTor()) { nClass = NET_TOR; nStartByte = 6; nBits = 4; } else if (IsI2P()) { nClass = NET_I2P; nStartByte = 6; nBits = 4; } // for he.net, use /36 groups else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70) nBits = 36; // for the rest of the IPv6 network, use /32 groups else nBits = 32; vchRet.push_back(nClass); while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } if (nBits > 0) vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1)); return vchRet; } uint64 CNetAddr::GetHash() const { uint256 hash = Hash(&ip[0], &ip[16]); uint64 nRet; memcpy(&nRet, &hash, sizeof(nRet)); return nRet; } void CNetAddr::print() const { printf("CNetAddr(%s)\n", ToString().c_str()); } // private extensions to enum Network, only returned by GetExtNetwork, // and only used in GetReachabilityFrom static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX + 1; int static GetExtNetwork(const CNetAddr *addr) { if (addr == NULL) return NET_UNKNOWN; if (addr->IsRFC4380()) return NET_TEREDO; return addr->GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable()) return REACH_UNREACHABLE; int ourNet = GetExtNetwork(this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch(theirNet) { case NET_IPV4: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled } case NET_TOR: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well case NET_TOR: return REACH_PRIVATE; } case NET_I2P: switch(ourNet) { default: return REACH_DEFAULT; case NET_I2P: return REACH_PRIVATE; } case NET_TEREDO: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNKNOWN: case NET_UNROUTABLE: default: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; case NET_I2P: return REACH_PRIVATE; // assume connections from unroutable addresses are case NET_TOR: return REACH_PRIVATE; // either from Tor/I2P, or don't care about our address } } } void CService::Init() { port = 0; } CService::CService() { Init(); } CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn) { } CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) { } #ifdef USE_IPV6 CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) { } #endif CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } #ifdef USE_IPV6 CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } #endif bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*(const struct sockaddr_in*)paddr); return true; #ifdef USE_IPV6 case AF_INET6: *this = CService(*(const struct sockaddr_in6*)paddr); return true; #endif default: return false; } } CService::CService(const char *pszIpPort, bool fAllowLookup) { Init(); CService ip; if (Lookup(pszIpPort, ip, 0, fAllowLookup)) *this = ip; } CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup) { Init(); CService ip; if (Lookup(pszIpPort, ip, portDefault, fAllowLookup)) *this = ip; } CService::CService(const std::string &strIpPort, bool fAllowLookup) { Init(); CService ip; if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup)) *this = ip; } CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup) { Init(); CService ip; if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup)) *this = ip; } unsigned short CService::GetPort() const { return port; } bool operator==(const CService& a, const CService& b) { return (CNetAddr)a == (CNetAddr)b && a.port == b.port; } bool operator!=(const CService& a, const CService& b) { return (CNetAddr)a != (CNetAddr)b || a.port != b.port; } bool operator<(const CService& a, const CService& b) { return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port); } bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) return false; *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr; memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) return false; paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } #ifdef USE_IPV6 if (IsIPv6()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) return false; *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr; memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) return false; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } #endif return false; } std::vector CService::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(&vKey[0], ip, 16); vKey[16] = port / 0x100; vKey[17] = port & 0x0FF; return vKey; } std::string CService::ToStringPort() const { return strprintf("%u", port); } std::string CService::ToStringIPPort() const { if (IsIPv4() || IsTor() || IsI2P()) { return ToStringIP() + ":" + ToStringPort(); } else { return "[" + ToStringIP() + "]:" + ToStringPort(); } } std::string CService::ToString() const { return ToStringIPPort(); } void CService::print() const { printf("CService(%s)\n", ToString().c_str()); } void CService::SetPort(unsigned short portIn) { port = portIn; }