// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include using util::ContainsNoNUL; using util::HasPrefix; CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const { switch (m_net) { case NET_IPV4: return BIP155Network::IPV4; case NET_IPV6: return BIP155Network::IPV6; case NET_ONION: return BIP155Network::TORV3; case NET_I2P: return BIP155Network::I2P; case NET_CJDNS: return BIP155Network::CJDNS; case NET_INTERNAL: // should have been handled before calling this function case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE case NET_MAX: // m_net is never and should not be set to NET_MAX assert(false); } // no default case, so the compiler can warn about missing cases assert(false); } bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size) { switch (possible_bip155_net) { case BIP155Network::IPV4: if (address_size == ADDR_IPV4_SIZE) { m_net = NET_IPV4; return true; } throw std::ios_base::failure( strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size, ADDR_IPV4_SIZE)); case BIP155Network::IPV6: if (address_size == ADDR_IPV6_SIZE) { m_net = NET_IPV6; return true; } throw std::ios_base::failure( strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size, ADDR_IPV6_SIZE)); case BIP155Network::TORV3: if (address_size == ADDR_TORV3_SIZE) { m_net = NET_ONION; return true; } throw std::ios_base::failure( strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size, ADDR_TORV3_SIZE)); case BIP155Network::I2P: if (address_size == ADDR_I2P_SIZE) { m_net = NET_I2P; return true; } throw std::ios_base::failure( strprintf("BIP155 I2P address with length %u (should be %u)", address_size, ADDR_I2P_SIZE)); case BIP155Network::CJDNS: if (address_size == ADDR_CJDNS_SIZE) { m_net = NET_CJDNS; return true; } throw std::ios_base::failure( strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size, ADDR_CJDNS_SIZE)); } // Don't throw on addresses with unknown network ids (maybe from the future). // Instead silently drop them and have the unserialization code consume // subsequent ones which may be known to us. return false; } /** * Construct an unspecified IPv6 network address (::/128). * * @note This address is considered invalid by CNetAddr::IsValid() */ CNetAddr::CNetAddr() = default; void CNetAddr::SetIP(const CNetAddr& ipIn) { // Size check. switch (ipIn.m_net) { case NET_IPV4: assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE); break; case NET_IPV6: assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE); break; case NET_ONION: assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE); break; case NET_I2P: assert(ipIn.m_addr.size() == ADDR_I2P_SIZE); break; case NET_CJDNS: assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE); break; case NET_INTERNAL: assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE); break; case NET_UNROUTABLE: case NET_MAX: assert(false); } // no default case, so the compiler can warn about missing cases m_net = ipIn.m_net; m_addr = ipIn.m_addr; } void CNetAddr::SetLegacyIPv6(Span ipv6) { assert(ipv6.size() == ADDR_IPV6_SIZE); size_t skip{0}; if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) { // IPv4-in-IPv6 m_net = NET_IPV4; skip = sizeof(IPV4_IN_IPV6_PREFIX); } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) { // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them. // Mimic a default-constructed CNetAddr object which is !IsValid() and thus // will not be gossiped, but continue reading next addresses from the stream. m_net = NET_IPV6; m_addr.assign(ADDR_IPV6_SIZE, 0x0); return; } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) { // Internal-in-IPv6 m_net = NET_INTERNAL; skip = sizeof(INTERNAL_IN_IPV6_PREFIX); } else { // IPv6 m_net = NET_IPV6; } m_addr.assign(ipv6.begin() + skip, ipv6.end()); } /** * Create an "internal" address that represents a name or FQDN. AddrMan uses * these fake addresses to keep track of which DNS seeds were used. * @returns Whether or not the operation was successful. * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193() */ bool CNetAddr::SetInternal(const std::string &name) { if (name.empty()) { return false; } m_net = NET_INTERNAL; unsigned char hash[32] = {}; CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash); m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE); return true; } namespace torv3 { // https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175 static constexpr size_t CHECKSUM_LEN = 2; static const unsigned char VERSION[] = {3}; static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION); static void Checksum(Span addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN]) { // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2] static const unsigned char prefix[] = ".onion checksum"; static constexpr size_t prefix_len = 15; SHA3_256 hasher; hasher.Write(Span{prefix}.first(prefix_len)); hasher.Write(addr_pubkey); hasher.Write(VERSION); uint8_t checksum_full[SHA3_256::OUTPUT_SIZE]; hasher.Finalize(checksum_full); memcpy(checksum, checksum_full, sizeof(checksum)); } }; // namespace torv3 bool CNetAddr::SetSpecial(const std::string& addr) { if (!ContainsNoNUL(addr)) { return false; } if (SetTor(addr)) { return true; } if (SetI2P(addr)) { return true; } return false; } bool CNetAddr::SetTor(const std::string& addr) { static const char* suffix{".onion"}; static constexpr size_t suffix_len{6}; if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) { return false; } auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len)); if (!input) { return false; } if (input->size() == torv3::TOTAL_LEN) { Span input_pubkey{input->data(), ADDR_TORV3_SIZE}; Span input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN}; Span input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)}; if (!std::ranges::equal(input_version, torv3::VERSION)) { return false; } uint8_t calculated_checksum[torv3::CHECKSUM_LEN]; torv3::Checksum(input_pubkey, calculated_checksum); if (!std::ranges::equal(input_checksum, calculated_checksum)) { return false; } m_net = NET_ONION; m_addr.assign(input_pubkey.begin(), input_pubkey.end()); return true; } return false; } bool CNetAddr::SetI2P(const std::string& addr) { // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p". static constexpr size_t b32_len{52}; static const char* suffix{".b32.i2p"}; static constexpr size_t suffix_len{8}; if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) { return false; } // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32() // can decode it. const std::string b32_padded = addr.substr(0, b32_len) + "===="; auto address_bytes = DecodeBase32(b32_padded); if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) { return false; } m_net = NET_I2P; m_addr.assign(address_bytes->begin(), address_bytes->end()); return true; } CNetAddr::CNetAddr(const struct in_addr& ipv4Addr) { m_net = NET_IPV4; const uint8_t* ptr = reinterpret_cast(&ipv4Addr); m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE); } CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope) { SetLegacyIPv6({reinterpret_cast(&ipv6Addr), sizeof(ipv6Addr)}); m_scope_id = scope; } bool CNetAddr::IsBindAny() const { if (!IsIPv4() && !IsIPv6()) { return false; } return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; }); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && ( m_addr[0] == 10 || (m_addr[0] == 192 && m_addr[1] == 168) || (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31)); } bool CNetAddr::IsRFC2544() const { return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && HasPrefix(m_addr, std::array{169, 254}); } bool CNetAddr::IsRFC6598() const { return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127; } bool CNetAddr::IsRFC5737() const { return IsIPv4() && (HasPrefix(m_addr, std::array{192, 0, 2}) || HasPrefix(m_addr, std::array{198, 51, 100}) || HasPrefix(m_addr, std::array{203, 0, 113})); } bool CNetAddr::IsRFC3849() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x01, 0x0D, 0xB8}); } bool CNetAddr::IsRFC3964() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x02}); } bool CNetAddr::IsRFC6052() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}); } bool CNetAddr::IsRFC4380() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x01, 0x00, 0x00}); } bool CNetAddr::IsRFC4862() const { return IsIPv6() && HasPrefix(m_addr, std::array{0xFE, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}); } bool CNetAddr::IsRFC4193() const { return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC; } bool CNetAddr::IsRFC6145() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00}); } bool CNetAddr::IsRFC4843() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x01, 0x00}) && (m_addr[3] & 0xF0) == 0x10; } bool CNetAddr::IsRFC7343() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x01, 0x00}) && (m_addr[3] & 0xF0) == 0x20; } bool CNetAddr::IsHeNet() const { return IsIPv6() && HasPrefix(m_addr, std::array{0x20, 0x01, 0x04, 0x70}); } bool CNetAddr::IsLocal() const { // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8) if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) { return true; } // IPv6 loopback (::1/128) static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) { return true; } return false; } /** * @returns Whether or not this network address is a valid address that @a could * be used to refer to an actual host. * * @note A valid address may or may not be publicly routable on the global * internet. As in, the set of valid addresses is a superset of the set of * publicly routable addresses. * * @see CNetAddr::IsRoutable() */ bool CNetAddr::IsValid() const { // unspecified IPv6 address (::/128) unsigned char ipNone6[16] = {}; if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) { return false; } if (IsCJDNS() && !HasCJDNSPrefix()) { return false; } // documentation IPv6 address if (IsRFC3849()) return false; if (IsInternal()) return false; if (IsIPv4()) { const uint32_t addr = ReadBE32(m_addr.data()); if (addr == INADDR_ANY || addr == INADDR_NONE) { return false; } } return true; } /** * @returns Whether or not this network address is publicly routable on the * global internet. * * @note A routable address is always valid. As in, the set of routable addresses * is a subset of the set of valid addresses. * * @see CNetAddr::IsValid() */ bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal()); } /** * @returns Whether or not this is a dummy address that represents a name. * * @see CNetAddr::SetInternal(const std::string &) */ bool CNetAddr::IsInternal() const { return m_net == NET_INTERNAL; } bool CNetAddr::IsAddrV1Compatible() const { switch (m_net) { case NET_IPV4: case NET_IPV6: case NET_INTERNAL: return true; case NET_ONION: case NET_I2P: case NET_CJDNS: return false; case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE case NET_MAX: // m_net is never and should not be set to NET_MAX assert(false); } // no default case, so the compiler can warn about missing cases assert(false); } enum Network CNetAddr::GetNetwork() const { if (IsInternal()) return NET_INTERNAL; if (!IsRoutable()) return NET_UNROUTABLE; return m_net; } static std::string IPv4ToString(Span a) { return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]); } // Return an IPv6 address text representation with zero compression as described in RFC 5952 // ("A Recommendation for IPv6 Address Text Representation"). static std::string IPv6ToString(Span a, uint32_t scope_id) { assert(a.size() == ADDR_IPV6_SIZE); const std::array groups{ ReadBE16(&a[0]), ReadBE16(&a[2]), ReadBE16(&a[4]), ReadBE16(&a[6]), ReadBE16(&a[8]), ReadBE16(&a[10]), ReadBE16(&a[12]), ReadBE16(&a[14]), }; // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683 struct ZeroSpan { size_t start_index{0}; size_t len{0}; }; // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more // zero sequences of equal length are found. ZeroSpan longest, current; for (size_t i{0}; i < groups.size(); ++i) { if (groups[i] != 0) { current = {i + 1, 0}; continue; } current.len += 1; if (current.len > longest.len) { longest = current; } } std::string r; r.reserve(39); for (size_t i{0}; i < groups.size(); ++i) { // Replace the longest sequence of consecutive all-zero fields with two colons ("::"). if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) { if (i == longest.start_index) { r += "::"; } continue; } r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]); } if (scope_id != 0) { r += strprintf("%%%u", scope_id); } return r; } std::string OnionToString(Span addr) { uint8_t checksum[torv3::CHECKSUM_LEN]; torv3::Checksum(addr, checksum); // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion" prevector address{addr.begin(), addr.end()}; address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN); address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION)); return EncodeBase32(address) + ".onion"; } std::string CNetAddr::ToStringAddr() const { switch (m_net) { case NET_IPV4: return IPv4ToString(m_addr); case NET_IPV6: return IPv6ToString(m_addr, m_scope_id); case NET_ONION: return OnionToString(m_addr); case NET_I2P: return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p"; case NET_CJDNS: return IPv6ToString(m_addr, 0); case NET_INTERNAL: return EncodeBase32(m_addr) + ".internal"; case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE case NET_MAX: // m_net is never and should not be set to NET_MAX assert(false); } // no default case, so the compiler can warn about missing cases assert(false); } bool operator==(const CNetAddr& a, const CNetAddr& b) { return a.m_net == b.m_net && a.m_addr == b.m_addr; } bool operator<(const CNetAddr& a, const CNetAddr& b) { return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr); } /** * Try to get our IPv4 address. * * @param[out] pipv4Addr The in_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv4 address. * * @see CNetAddr::IsIPv4() */ bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const { if (!IsIPv4()) return false; assert(sizeof(*pipv4Addr) == m_addr.size()); memcpy(pipv4Addr, m_addr.data(), m_addr.size()); return true; } /** * Try to get our IPv6 (or CJDNS) address. * * @param[out] pipv6Addr The in6_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv6 address. * * @see CNetAddr::IsIPv6() */ bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const { if (!IsIPv6() && !IsCJDNS()) { return false; } assert(sizeof(*pipv6Addr) == m_addr.size()); memcpy(pipv6Addr, m_addr.data(), m_addr.size()); return true; } bool CNetAddr::HasLinkedIPv4() const { return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380()); } uint32_t CNetAddr::GetLinkedIPv4() const { if (IsIPv4()) { return ReadBE32(m_addr.data()); } else if (IsRFC6052() || IsRFC6145()) { // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data()); } else if (IsRFC3964()) { // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6 return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data()); } else if (IsRFC4380()) { // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data()); } assert(false); } Network CNetAddr::GetNetClass() const { // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that. // Check for "internal" first because such addresses are also !IsRoutable() // and we don't want to return NET_UNROUTABLE in that case. if (IsInternal()) { return NET_INTERNAL; } if (!IsRoutable()) { return NET_UNROUTABLE; } if (HasLinkedIPv4()) { return NET_IPV4; } return m_net; } std::vector CNetAddr::GetAddrBytes() const { if (IsAddrV1Compatible()) { uint8_t serialized[V1_SERIALIZATION_SIZE]; SerializeV1Array(serialized); return {std::begin(serialized), std::end(serialized)}; } return std::vector(m_addr.begin(), m_addr.end()); } // private extensions to enum Network, only returned by GetExtNetwork, // and only used in GetReachabilityFrom static const int NET_TEREDO = NET_MAX; int static GetExtNetwork(const CNetAddr& addr) { if (addr.IsRFC4380()) return NET_TEREDO; return addr.GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable() || IsInternal()) return REACH_UNREACHABLE; int ourNet = GetExtNetwork(*this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch(theirNet) { case NET_IPV4: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled } case NET_ONION: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well case NET_ONION: return REACH_PRIVATE; } case NET_I2P: switch (ourNet) { case NET_I2P: return REACH_PRIVATE; default: return REACH_DEFAULT; } case NET_CJDNS: switch (ourNet) { case NET_CJDNS: return REACH_PRIVATE; default: return REACH_DEFAULT; } case NET_TEREDO: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNROUTABLE: default: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address } } } CService::CService() : port(0) { } CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn) { } CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn) { } CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn) { } CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*(const struct sockaddr_in*)paddr); return true; case AF_INET6: *this = CService(*(const struct sockaddr_in6*)paddr); return true; default: return false; } } sa_family_t CService::GetSAFamily() const { switch (m_net) { case NET_IPV4: return AF_INET; case NET_IPV6: case NET_CJDNS: return AF_INET6; default: return AF_UNSPEC; } } uint16_t CService::GetPort() const { return port; } bool operator==(const CService& a, const CService& b) { return static_cast(a) == static_cast(b) && a.port == b.port; } bool operator<(const CService& a, const CService& b) { return static_cast(a) < static_cast(b) || (static_cast(a) == static_cast(b) && a.port < b.port); } /** * Obtain the IPv4/6 socket address this represents. * * @param[out] paddr The obtained socket address. * @param[in,out] addrlen The size, in bytes, of the address structure pointed * to by paddr. The value that's pointed to by this * parameter might change after calling this function if * the size of the corresponding address structure * changed. * * @returns Whether or not the operation was successful. */ bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) return false; *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr; memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) return false; paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } if (IsIPv6() || IsCJDNS()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) return false; *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr; memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) return false; paddrin6->sin6_scope_id = m_scope_id; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } return false; } /** * @returns An identifier unique to this service's address and port number. */ std::vector CService::GetKey() const { auto key = GetAddrBytes(); key.push_back(port / 0x100); // most significant byte of our port key.push_back(port & 0x0FF); // least significant byte of our port return key; } std::string CService::ToStringAddrPort() const { const auto port_str = strprintf("%u", port); if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) { return ToStringAddr() + ":" + port_str; } else { return "[" + ToStringAddr() + "]:" + port_str; } } CSubNet::CSubNet(): valid(false) { memset(netmask, 0, sizeof(netmask)); } CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet() { valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) || (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8); if (!valid) { return; } assert(mask <= sizeof(netmask) * 8); network = addr; uint8_t n = mask; for (size_t i = 0; i < network.m_addr.size(); ++i) { const uint8_t bits = n < 8 ? n : 8; netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits. network.m_addr[i] &= netmask[i]; // Normalize network according to netmask. n -= bits; } } /** * @returns The number of 1-bits in the prefix of the specified subnet mask. If * the specified subnet mask is not a valid one, -1. */ static inline int NetmaskBits(uint8_t x) { switch(x) { case 0x00: return 0; case 0x80: return 1; case 0xc0: return 2; case 0xe0: return 3; case 0xf0: return 4; case 0xf8: return 5; case 0xfc: return 6; case 0xfe: return 7; case 0xff: return 8; default: return -1; } } CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet() { valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net; if (!valid) { return; } // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask). bool zeros_found = false; for (auto b : mask.m_addr) { const int num_bits = NetmaskBits(b); if (num_bits == -1 || (zeros_found && num_bits != 0)) { valid = false; return; } if (num_bits < 8) { zeros_found = true; } } assert(mask.m_addr.size() <= sizeof(netmask)); memcpy(netmask, mask.m_addr.data(), mask.m_addr.size()); network = addr; // Normalize network according to netmask for (size_t x = 0; x < network.m_addr.size(); ++x) { network.m_addr[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr& addr) : CSubNet() { switch (addr.m_net) { case NET_IPV4: case NET_IPV6: valid = true; assert(addr.m_addr.size() <= sizeof(netmask)); memset(netmask, 0xFF, addr.m_addr.size()); break; case NET_ONION: case NET_I2P: case NET_CJDNS: valid = true; break; case NET_INTERNAL: case NET_UNROUTABLE: case NET_MAX: return; } network = addr; } /** * @returns True if this subnet is valid, the specified address is valid, and * the specified address belongs in this subnet. */ bool CSubNet::Match(const CNetAddr &addr) const { if (!valid || !addr.IsValid() || network.m_net != addr.m_net) return false; switch (network.m_net) { case NET_IPV4: case NET_IPV6: break; case NET_ONION: case NET_I2P: case NET_CJDNS: case NET_INTERNAL: return addr == network; case NET_UNROUTABLE: case NET_MAX: return false; } assert(network.m_addr.size() == addr.m_addr.size()); for (size_t x = 0; x < addr.m_addr.size(); ++x) { if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) { return false; } } return true; } std::string CSubNet::ToString() const { std::string suffix; switch (network.m_net) { case NET_IPV4: case NET_IPV6: { assert(network.m_addr.size() <= sizeof(netmask)); uint8_t cidr = 0; for (size_t i = 0; i < network.m_addr.size(); ++i) { if (netmask[i] == 0x00) { break; } cidr += NetmaskBits(netmask[i]); } suffix = strprintf("/%u", cidr); break; } case NET_ONION: case NET_I2P: case NET_CJDNS: case NET_INTERNAL: case NET_UNROUTABLE: case NET_MAX: break; } return network.ToStringAddr() + suffix; } bool CSubNet::IsValid() const { return valid; } bool operator==(const CSubNet& a, const CSubNet& b) { return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); } bool operator<(const CSubNet& a, const CSubNet& b) { return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0)); }