// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "core.h" #include "ui_interface.h" #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include // Dump addresses to peers.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif using namespace std; using namespace boost; namespace { const int MAX_OUTBOUND_CONNECTIONS = 8; struct ListenSocket { SOCKET socket; bool whitelisted; ListenSocket(SOCKET socket, bool whitelisted) : socket(socket), whitelisted(whitelisted) {} }; } // // Global state variables // bool fDiscover = true; bool fListen = true; uint64_t nLocalServices = NODE_NETWORK; CCriticalSection cs_mapLocalHost; map mapLocalHost; static bool vfReachable[NET_MAX] = {}; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; static CNode* pnodeSync = NULL; uint64_t nLocalHostNonce = 0; static std::vector vhListenSocket; CAddrMan addrman; int nMaxConnections = 125; vector vNodes; CCriticalSection cs_vNodes; map mapRelay; deque > vRelayExpiration; CCriticalSection cs_mapRelay; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); static deque vOneShots; CCriticalSection cs_vOneShots; set setservAddNodeAddresses; CCriticalSection cs_setservAddNodeAddresses; vector vAddedNodes; CCriticalSection cs_vAddedNodes; NodeId nLastNodeId = 0; CCriticalSection cs_nLastNodeId; static CSemaphore *semOutbound = NULL; // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } void AddOneShot(string strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (map::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } // get best local address for a particular peer as a CAddress CAddress GetLocalAddress(const CNetAddr *paddrPeer) { CAddress ret(CService("0.0.0.0",0),0); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr); ret.nServices = nLocalServices; ret.nTime = GetAdjustedTime(); } return ret; } bool RecvLine(SOCKET hSocket, string& strLine) { strLine = ""; while (true) { char c; int nBytes = recv(hSocket, &c, 1, 0); if (nBytes > 0) { if (c == '\n') continue; if (c == '\r') return true; strLine += c; if (strLine.size() >= 9000) return true; } else if (nBytes <= 0) { boost::this_thread::interruption_point(); if (nBytes < 0) { int nErr = WSAGetLastError(); if (nErr == WSAEMSGSIZE) continue; if (nErr == WSAEWOULDBLOCK || nErr == WSAEINTR || nErr == WSAEINPROGRESS) { MilliSleep(10); continue; } } if (!strLine.empty()) return true; if (nBytes == 0) { // socket closed LogPrint("net", "socket closed\n"); return false; } else { // socket error int nErr = WSAGetLastError(); LogPrint("net", "recv failed: %s\n", NetworkErrorString(nErr)); return false; } } } } // used when scores of local addresses may have changed // pushes better local address to peers void static AdvertizeLocal() { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr); if (addrLocal.IsRoutable() && (CService)addrLocal != (CService)pnode->addrLocal) { pnode->PushAddress(addrLocal); pnode->addrLocal = addrLocal; } } } } void SetReachable(enum Network net, bool fFlag) { LOCK(cs_mapLocalHost); vfReachable[net] = fFlag; if (net == NET_IPV6 && fFlag) vfReachable[NET_IPV4] = true; } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } SetReachable(addr.GetNetwork()); } AdvertizeLocal(); return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } AdvertizeLocal(); return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { LOCK(cs_mapLocalHost); enum Network net = addr.GetNetwork(); return vfReachable[net] && !vfLimited[net]; } bool GetMyExternalIP2(const CService& addrConnect, const char* pszGet, const char* pszKeyword, CNetAddr& ipRet) { SOCKET hSocket; if (!ConnectSocket(addrConnect, hSocket)) return error("GetMyExternalIP() : connection to %s failed", addrConnect.ToString()); send(hSocket, pszGet, strlen(pszGet), MSG_NOSIGNAL); string strLine; while (RecvLine(hSocket, strLine)) { if (strLine.empty()) // HTTP response is separated from headers by blank line { while (true) { if (!RecvLine(hSocket, strLine)) { CloseSocket(hSocket); return false; } if (pszKeyword == NULL) break; if (strLine.find(pszKeyword) != string::npos) { strLine = strLine.substr(strLine.find(pszKeyword) + strlen(pszKeyword)); break; } } CloseSocket(hSocket); if (strLine.find("<") != string::npos) strLine = strLine.substr(0, strLine.find("<")); strLine = strLine.substr(strspn(strLine.c_str(), " \t\n\r")); while (strLine.size() > 0 && isspace(strLine[strLine.size()-1])) strLine.resize(strLine.size()-1); CService addr(strLine,0,true); LogPrintf("GetMyExternalIP() received [%s] %s\n", strLine, addr.ToString()); if (!addr.IsValid() || !addr.IsRoutable()) return false; ipRet.SetIP(addr); return true; } } CloseSocket(hSocket); return error("GetMyExternalIP() : connection closed"); } bool GetMyExternalIP(CNetAddr& ipRet) { CService addrConnect; const char* pszGet; const char* pszKeyword; for (int nLookup = 0; nLookup <= 1; nLookup++) for (int nHost = 1; nHost <= 2; nHost++) { // We should be phasing out our use of sites like these. If we need // replacements, we should ask for volunteers to put this simple // php file on their web server that prints the client IP: // if (nHost == 1) { addrConnect = CService("91.198.22.70", 80); // checkip.dyndns.org if (nLookup == 1) { CService addrIP("checkip.dyndns.org", 80, true); if (addrIP.IsValid()) addrConnect = addrIP; } pszGet = "GET / HTTP/1.1\r\n" "Host: checkip.dyndns.org\r\n" "User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)\r\n" "Connection: close\r\n" "\r\n"; pszKeyword = "Address:"; } else if (nHost == 2) { addrConnect = CService("74.208.43.192", 80); // www.showmyip.com if (nLookup == 1) { CService addrIP("www.showmyip.com", 80, true); if (addrIP.IsValid()) addrConnect = addrIP; } pszGet = "GET /simple/ HTTP/1.1\r\n" "Host: www.showmyip.com\r\n" "User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)\r\n" "Connection: close\r\n" "\r\n"; pszKeyword = NULL; // Returns just IP address } if (GetMyExternalIP2(addrConnect, pszGet, pszKeyword, ipRet)) return true; } return false; } void ThreadGetMyExternalIP() { CNetAddr addrLocalHost; if (GetMyExternalIP(addrLocalHost)) { LogPrintf("GetMyExternalIP() returned %s\n", addrLocalHost.ToStringIP()); AddLocal(addrLocalHost, LOCAL_HTTP); } } void AddressCurrentlyConnected(const CService& addr) { addrman.Connected(addr); } uint64_t CNode::nTotalBytesRecv = 0; uint64_t CNode::nTotalBytesSent = 0; CCriticalSection CNode::cs_totalBytesRecv; CCriticalSection CNode::cs_totalBytesSent; CNode* FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CNetAddr)pnode->addr == ip) return (pnode); return NULL; } CNode* FindNode(const std::string& addrName) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->addrName == addrName) return (pnode); return NULL; } CNode* FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CService)pnode->addr == addr) return (pnode); return NULL; } CNode* ConnectNode(CAddress addrConnect, const char *pszDest) { if (pszDest == NULL) { if (IsLocal(addrConnect)) return NULL; // Look for an existing connection CNode* pnode = FindNode((CService)addrConnect); if (pnode) { pnode->AddRef(); return pnode; } } /// debug print LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort()) : ConnectSocket(addrConnect, hSocket)) { addrman.Attempt(addrConnect); // Set to non-blocking #ifdef WIN32 u_long nOne = 1; if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) LogPrintf("ConnectSocket() : ioctlsocket non-blocking setting failed, error %s\n", NetworkErrorString(WSAGetLastError())); #else if (fcntl(hSocket, F_SETFL, O_NONBLOCK) == SOCKET_ERROR) LogPrintf("ConnectSocket() : fcntl non-blocking setting failed, error %s\n", NetworkErrorString(errno)); #endif // Add node CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false); pnode->AddRef(); { LOCK(cs_vNodes); vNodes.push_back(pnode); } pnode->nTimeConnected = GetTime(); return pnode; } return NULL; } void CNode::CloseSocketDisconnect() { fDisconnect = true; if (hSocket != INVALID_SOCKET) { LogPrint("net", "disconnecting peer=%d\n", id); CloseSocket(hSocket); } // in case this fails, we'll empty the recv buffer when the CNode is deleted TRY_LOCK(cs_vRecvMsg, lockRecv); if (lockRecv) vRecvMsg.clear(); // if this was the sync node, we'll need a new one if (this == pnodeSync) pnodeSync = NULL; } void CNode::PushVersion() { int nBestHeight = g_signals.GetHeight().get_value_or(0); /// when NTP implemented, change to just nTime = GetAdjustedTime() int64_t nTime = (fInbound ? GetAdjustedTime() : GetTime()); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService("0.0.0.0",0))); CAddress addrMe = GetLocalAddress(&addr); GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id); PushMessage("version", PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe, nLocalHostNonce, FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, std::vector()), nBestHeight, true); } std::map CNode::setBanned; CCriticalSection CNode::cs_setBanned; void CNode::ClearBanned() { setBanned.clear(); } bool CNode::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); std::map::iterator i = setBanned.find(ip); if (i != setBanned.end()) { int64_t t = (*i).second; if (GetTime() < t) fResult = true; } } return fResult; } bool CNode::Ban(const CNetAddr &addr) { int64_t banTime = GetTime()+GetArg("-bantime", 60*60*24); // Default 24-hour ban { LOCK(cs_setBanned); if (setBanned[addr] < banTime) setBanned[addr] = banTime; } return true; } std::vector CNode::vWhitelistedRange; CCriticalSection CNode::cs_vWhitelistedRange; bool CNode::IsWhitelistedRange(const CNetAddr &addr) { LOCK(cs_vWhitelistedRange); BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } void CNode::AddWhitelistedRange(const CSubNet &subnet) { LOCK(cs_vWhitelistedRange); vWhitelistedRange.push_back(subnet); } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(nLastSend); X(nLastRecv); X(nTimeConnected); X(addrName); X(nVersion); X(cleanSubVer); X(fInbound); X(nStartingHeight); X(nSendBytes); X(nRecvBytes); X(fWhitelisted); stats.fSyncNode = (this == pnodeSync); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; } #undef X // requires LOCK(cs_vRecvMsg) bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes) { while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(SER_NETWORK, nRecvVersion)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; pch += handled; nBytes -= handled; if (msg.complete()) msg.nTime = GetTimeMicros(); } return true; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (std::exception &e) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) void SocketSendData(CNode *pnode) { std::deque::iterator it = pnode->vSendMsg.begin(); while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); if (nBytes > 0) { pnode->nLastSend = GetTime(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; pnode->RecordBytesSent(nBytes); if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); } static list vNodesDisconnected; void ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (true) { // // Disconnect nodes // { LOCK(cs_vNodes); // Disconnect unused nodes vector vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect || (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty())) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes list vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); delete pnode; } } } } if(vNodes.size() != nPrevNodeCount) { nPrevNodeCount = vNodes.size(); uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount); } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is no (complete) message in the receive buffer, // or there is space left in the buffer, select() for receiving data. // * (if neither of the above applies, there is certainly one message // in the receiver buffer ready to be processed). // Together, that means that at least one of the following is always possible, // so we don't deadlock: // * We send some data. // * We wait for data to be received (and disconnect after timeout). // * We process a message in the buffer (message handler thread). { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend && !pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv && ( pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() || pnode->GetTotalRecvSize() <= ReceiveFloodSize())) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); boost::this_thread::interruption_point(); if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); MilliSleep(timeout.tv_usec/1000); } // // Accept new connections // BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; if (hSocket != INVALID_SOCKET) if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) LogPrintf("Warning: Unknown socket family\n"); bool whitelisted = hListenSocket.whitelisted || CNode::IsWhitelistedRange(addr); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->fInbound) nInbound++; } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } else if (nInbound >= nMaxConnections - MAX_OUTBOUND_CONNECTIONS) { CloseSocket(hSocket); } else if (CNode::IsBanned(addr) && !whitelisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); } else { CNode* pnode = new CNode(hSocket, addr, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; { LOCK(cs_vNodes); vNodes.push_back(pnode); } } } } // // Service each socket // vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->AddRef(); } BOOST_FOREACH(CNode* pnode, vNodesCopy) { boost::this_thread::interruption_point(); // // Receive // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError)) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); if (nBytes > 0) { if (!pnode->ReceiveMsgBytes(pchBuf, nBytes)) pnode->CloseSocketDisconnect(); pnode->nLastRecv = GetTime(); pnode->nRecvBytes += nBytes; pnode->RecordBytesRecv(nBytes); } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) LogPrint("net", "socket closed\n"); pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } } } } // // Send // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetSend)) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) SocketSendData(pnode); } // // Inactivity checking // int64_t nTime = GetTime(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } MilliSleep(10); } } #ifdef USE_UPNP void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = 0; const char * minissdpdpath = 0; struct UPNPDev * devlist = 0; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #else /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { LogPrintf("UPnP: ExternalIPAddress = %s\n", externalIPAddress); AddLocal(CNetAddr(externalIPAddress), LOCAL_UPNP); } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } string strDesc = "Bitcoin " + FormatFullVersion(); try { while (true) { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n");; MilliSleep(20*60*1000); // Refresh every 20 minutes } } catch (boost::thread_interrupted) { r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned : %d\n", r); freeUPNPDevlist(devlist); devlist = 0; FreeUPNPUrls(&urls); throw; } } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = 0; if (r != 0) FreeUPNPUrls(&urls); } } void MapPort(bool fUseUPnP) { static boost::thread* upnp_thread = NULL; if (fUseUPnP) { if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; } upnp_thread = new boost::thread(boost::bind(&TraceThread, "upnp", &ThreadMapPort)); } else if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; upnp_thread = NULL; } } #else void MapPort(bool) { // Intentionally left blank. } #endif void ThreadDNSAddressSeed() { const vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { vector vIPs; vector vAdd; if (LookupHost(seed.host.c_str(), vIPs)) { BOOST_FOREACH(CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort())); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } } addrman.Add(vAdd, CNetAddr(seed.name, true)); } } LogPrintf("%d addresses found from DNS seeds\n", found); } void DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void static ProcessOneShot() { string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } void ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(string strAddr, mapMultiArgs["-connect"]) { CAddress addr; OpenNetworkConnection(addr, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { MilliSleep(500); } } MilliSleep(500); } } // Initiate network connections int64_t nStart = GetTime(); while (true) { ProcessOneShot(); MilliSleep(500); CSemaphoreGrant grant(*semOutbound); boost::this_thread::interruption_point(); // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); addrman.Add(Params().FixedSeeds(), CNetAddr("127.0.0.1")); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. int nOutbound = 0; set > setConnected; { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound) { setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } int64_t nANow = GetAdjustedTime(); int nTries = 0; while (true) { // use an nUnkBias between 10 (no outgoing connections) and 90 (8 outgoing connections) CAddress addr = addrman.Select(10 + min(nOutbound,8)*10); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) OpenNetworkConnection(addrConnect, &grant); } } void ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } if (HaveNameProxy()) { while(true) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } BOOST_FOREACH(string& strAddNode, lAddresses) { CAddress addr; CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(addr, &grant, strAddNode.c_str()); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } for (unsigned int i = 0; true; i++) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } list > lservAddressesToAdd(0); BOOST_FOREACH(string& strAddNode, lAddresses) { vector vservNode(0); if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0)) { lservAddressesToAdd.push_back(vservNode); { LOCK(cs_setservAddNodeAddresses); BOOST_FOREACH(CService& serv, vservNode) setservAddNodeAddresses.insert(serv); } } } // Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry // (keeping in mind that addnode entries can have many IPs if fNameLookup) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) for (list >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++) BOOST_FOREACH(CService& addrNode, *(it)) if (pnode->addr == addrNode) { it = lservAddressesToAdd.erase(it); it--; break; } } BOOST_FOREACH(vector& vserv, lservAddressesToAdd) { CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), &grant); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } // if successful, this moves the passed grant to the constructed node bool OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot) { // // Initiate outbound network connection // boost::this_thread::interruption_point(); if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || CNode::IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(pszDest)) return false; CNode* pnode = ConnectNode(addrConnect, pszDest); boost::this_thread::interruption_point(); if (!pnode) return false; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); pnode->fNetworkNode = true; if (fOneShot) pnode->fOneShot = true; return true; } // for now, use a very simple selection metric: the node from which we received // most recently static int64_t NodeSyncScore(const CNode *pnode) { return pnode->nLastRecv; } void static StartSync(const vector &vNodes) { CNode *pnodeNewSync = NULL; int64_t nBestScore = 0; int nBestHeight = g_signals.GetHeight().get_value_or(0); // Iterate over all nodes BOOST_FOREACH(CNode* pnode, vNodes) { // check preconditions for allowing a sync if (!pnode->fClient && !pnode->fOneShot && !pnode->fDisconnect && pnode->fSuccessfullyConnected && (pnode->nStartingHeight > (nBestHeight - 144)) && (pnode->nVersion < NOBLKS_VERSION_START || pnode->nVersion >= NOBLKS_VERSION_END)) { // if ok, compare node's score with the best so far int64_t nScore = NodeSyncScore(pnode); if (pnodeNewSync == NULL || nScore > nBestScore) { pnodeNewSync = pnode; nBestScore = nScore; } } } // if a new sync candidate was found, start sync! if (pnodeNewSync) { pnodeNewSync->fStartSync = true; pnodeSync = pnodeNewSync; } } void ThreadMessageHandler() { SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL); while (true) { bool fHaveSyncNode = false; vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { pnode->AddRef(); if (pnode == pnodeSync) fHaveSyncNode = true; } } if (!fHaveSyncNode) StartSync(vNodesCopy); // Poll the connected nodes for messages CNode* pnodeTrickle = NULL; if (!vNodesCopy.empty()) pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())]; bool fSleep = true; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { if (!g_signals.ProcessMessages(pnode)) pnode->CloseSocketDisconnect(); if (pnode->nSendSize < SendBufferSize()) { if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete())) { fSleep = false; } } } } boost::this_thread::interruption_point(); // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) g_signals.SendMessages(pnode, pnode == pnodeTrickle); } boost::this_thread::interruption_point(); } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } if (fSleep) MilliSleep(100); } } bool BindListenPort(const CService &addrBind, string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } #ifndef WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. Not an issue on windows! setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); #endif #ifdef WIN32 // Set to non-blocking, incoming connections will also inherit this if (ioctlsocket(hListenSocket, FIONBIO, (u_long*)&nOne) == SOCKET_ERROR) #else if (fcntl(hListenSocket, F_SETFL, O_NONBLOCK) == SOCKET_ERROR) #endif { strError = strprintf("Error: Couldn't set properties on socket for incoming connections (error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. Bitcoin Core is probably already running."), addrBind.ToString()); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void static Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[1000] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { vector vaddr; if (LookupHost(pszHostName, vaddr)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { AddLocal(addr, LOCAL_IF); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("IPv4 %s: %s\n", ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("IPv6 %s: %s\n", ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif // Don't use external IPv4 discovery, when -onlynet="IPv6" if (!IsLimited(NET_IPV4)) threadGroup.create_thread(boost::bind(&TraceThread, "ext-ip", &ThreadGetMyExternalIP)); } void StartNode(boost::thread_group& threadGroup) { if (semOutbound == NULL) { // initialize semaphore int nMaxOutbound = min(MAX_OUTBOUND_CONNECTIONS, nMaxConnections); semOutbound = new CSemaphore(nMaxOutbound); } if (pnodeLocalHost == NULL) pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService("127.0.0.1", 0), nLocalServices)); Discover(threadGroup); // // Start threads // if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadGroup.create_thread(boost::bind(&TraceThread, "dnsseed", &ThreadDNSAddressSeed)); // Map ports with UPnP MapPort(GetBoolArg("-upnp", DEFAULT_UPNP)); // Send and receive from sockets, accept connections threadGroup.create_thread(boost::bind(&TraceThread, "net", &ThreadSocketHandler)); // Initiate outbound connections from -addnode threadGroup.create_thread(boost::bind(&TraceThread, "addcon", &ThreadOpenAddedConnections)); // Initiate outbound connections threadGroup.create_thread(boost::bind(&TraceThread, "opencon", &ThreadOpenConnections)); // Process messages threadGroup.create_thread(boost::bind(&TraceThread, "msghand", &ThreadMessageHandler)); // Dump network addresses threadGroup.create_thread(boost::bind(&LoopForever, "dumpaddr", &DumpAddresses, DUMP_ADDRESSES_INTERVAL * 1000)); } bool StopNode() { LogPrintf("StopNode()\n"); MapPort(false); if (semOutbound) for (int i=0; ipost(); MilliSleep(50); DumpAddresses(); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) delete pnode; BOOST_FOREACH(CNode *pnode, vNodesDisconnected) delete pnode; vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete pnodeLocalHost; pnodeLocalHost = NULL; #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void RelayTransaction(const CTransaction& tx) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(10000); ss << tx; RelayTransaction(tx, ss); } void RelayTransaction(const CTransaction& tx, const CDataStream& ss) { CInv inv(MSG_TX, tx.GetHash()); { LOCK(cs_mapRelay); // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime()) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } // Save original serialized message so newer versions are preserved mapRelay.insert(std::make_pair(inv, ss)); vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv)); } LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if(!pnode->fRelayTxes) continue; LOCK(pnode->cs_filter); if (pnode->pfilter) { if (pnode->pfilter->IsRelevantAndUpdate(tx)) pnode->PushInventory(inv); } else pnode->PushInventory(inv); } } void CNode::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CNode::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; } uint64_t CNode::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CNode::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } void CNode::Fuzz(int nChance) { if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages switch (GetRand(3)) { case 0: // xor a random byte with a random value: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend[pos] ^= (unsigned char)(GetRand(256)); } break; case 1: // delete a random byte: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend.erase(ssSend.begin()+pos); } break; case 2: // insert a random byte at a random position { CDataStream::size_type pos = GetRand(ssSend.size()); char ch = (char)GetRand(256); ssSend.insert(ssSend.begin()+pos, ch); } break; } // Chance of more than one change half the time: // (more changes exponentially less likely): Fuzz(2); } // // CAddrDB // CAddrDB::CAddrDB() { pathAddr = GetDataDir() / "peers.dat"; } bool CAddrDB::Write(const CAddrMan& addr) { // Generate random temporary filename unsigned short randv = 0; GetRandBytes((unsigned char*)&randv, sizeof(randv)); std::string tmpfn = strprintf("peers.dat.%04x", randv); // serialize addresses, checksum data up to that point, then append csum CDataStream ssPeers(SER_DISK, CLIENT_VERSION); ssPeers << FLATDATA(Params().MessageStart()); ssPeers << addr; uint256 hash = Hash(ssPeers.begin(), ssPeers.end()); ssPeers << hash; // open temp output file, and associate with CAutoFile boost::filesystem::path pathTmp = GetDataDir() / tmpfn; FILE *file = fopen(pathTmp.string().c_str(), "wb"); CAutoFile fileout = CAutoFile(file, SER_DISK, CLIENT_VERSION); if (!fileout) return error("%s : Failed to open file %s", __func__, pathTmp.string()); // Write and commit header, data try { fileout << ssPeers; } catch (std::exception &e) { return error("%s : Serialize or I/O error - %s", __func__, e.what()); } FileCommit(fileout); fileout.fclose(); // replace existing peers.dat, if any, with new peers.dat.XXXX if (!RenameOver(pathTmp, pathAddr)) return error("%s : Rename-into-place failed", __func__); return true; } bool CAddrDB::Read(CAddrMan& addr) { // open input file, and associate with CAutoFile FILE *file = fopen(pathAddr.string().c_str(), "rb"); CAutoFile filein = CAutoFile(file, SER_DISK, CLIENT_VERSION); if (!filein) return error("%s : Failed to open file %s", __func__, pathAddr.string()); // use file size to size memory buffer int fileSize = boost::filesystem::file_size(pathAddr); int dataSize = fileSize - sizeof(uint256); // Don't try to resize to a negative number if file is small if (dataSize < 0) dataSize = 0; vector vchData; vchData.resize(dataSize); uint256 hashIn; // read data and checksum from file try { filein.read((char *)&vchData[0], dataSize); filein >> hashIn; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } filein.fclose(); CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION); // verify stored checksum matches input data uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end()); if (hashIn != hashTmp) return error("%s : Checksum mismatch, data corrupted", __func__); unsigned char pchMsgTmp[4]; try { // de-serialize file header (network specific magic number) and .. ssPeers >> FLATDATA(pchMsgTmp); // ... verify the network matches ours if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp))) return error("%s : Invalid network magic number", __func__); // de-serialize address data into one CAddrMan object ssPeers >> addr; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } return true; }