// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. #define FEELER_SLEEP_WINDOW 1 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0 #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0 #if !defined(MSG_DONTWAIT) #define MSG_DONTWAIT 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), BF_WHITELIST = (1U << 2), }; const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8] // // Global state variables // bool fDiscover = true; bool fListen = true; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost; static bool vfLimited[NET_MAX] = {}; std::string strSubVersion; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); void CConnman::AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto& entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeed6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (const auto& seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE)); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } static int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && !IsLimited(addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); if (gArgs.GetBoolArg("-addrmantest", false)) { // use IPv4 loopback during addrmantest addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices()); } // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) { LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); FastRandomContext insecure_rand; pnode->PushAddress(addrLocal, insecure_rand); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } void RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } CNode* CConnman::FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const CSubNet& subNet) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const std::string& addrName) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const CService& addr) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) return false; } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection) { if (pszDest == nullptr) { if (IsLocal(addrConnect)) return nullptr; // Look for an existing connection CNode* pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); // Resolve const int default_port = Params().GetDefaultPort(); if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port pszDest resolved to. // In that case, drop the connection that was just created, and return the existing CNode instead. // Also store the name we used to connect in that CNode, so that future FindNode() calls to that // name catch this early. LOCK(cs_vNodes); CNode* pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; SOCKET hSocket = INVALID_SOCKET; proxyType proxy; if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (GetProxy(addrConnect.GetNetwork(), proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed); } else { // no proxy needed (none set for target network) hSocket = CreateSocket(addrConnect); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout, manual_connection); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } std::string host; int port = default_port; SplitHostPort(std::string(pszDest), port, host); connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr); } if (!connected) { CloseSocket(hSocket); return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false); pnode->AddRef(); return pnode; } void CConnman::DumpBanlist() { SweepBanned(); // clean unused entries (if bantime has expired) if (!BannedSetIsDirty()) return; int64_t nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; GetBanned(banmap); if (bandb.Write(banmap)) { SetBannedSetDirty(false); } LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect() { fDisconnect = true; LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk if(clientInterface) clientInterface->BannedListChanged(); } bool CConnman::IsBanned(CNetAddr ip) { LOCK(cs_setBanned); for (const auto& it : setBanned) { CSubNet subNet = it.first; CBanEntry banEntry = it.second; if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) { return true; } } return false; } bool CConnman::IsBanned(CSubNet subnet) { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) { return true; } } return false; } void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else return; } if(clientInterface) clientInterface->BannedListChanged(); { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) pnode->fDisconnect = true; } } if(banReason == BanReasonManuallyAdded) DumpBanlist(); //store banlist to disk immediately if user requested ban } bool CConnman::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CConnman::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) return false; setBannedIsDirty = true; } if(clientInterface) clientInterface->BannedListChanged(); DumpBanlist(); //store banlist to disk immediately return true; } void CConnman::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); // Sweep the banlist so expired bans are not returned SweepBanned(); banMap = setBanned; //create a thread safe copy } void CConnman::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CConnman::SweepBanned() { int64_t now = GetTime(); bool notifyUI = false; { LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while(it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; notifyUI = true; LogPrint(BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else ++it; } } // update UI if(notifyUI && clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CConnman::SetBannedSetDirty(bool dirty) { LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag setBannedIsDirty = dirty; } bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { for (const CSubNet& subnet : vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string& addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService& addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(addr); X(addrBind); { LOCK(cs_filter); X(fRelayTxes); } X(nLastSend); X(nLastRecv); X(nTimeConnected); X(nTimeOffset); stats.addrName = GetAddrName(); X(nVersion); { LOCK(cs_SubVer); X(cleanSubVer); } X(fInbound); X(m_manual_connection); X(nStartingHeight); { LOCK(cs_vSend); X(mapSendBytesPerMsgCmd); X(nSendBytes); } { LOCK(cs_vRecv); X(mapRecvBytesPerMsgCmd); X(nRecvBytes); } X(fWhitelisted); X(minFeeFilter); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dMinPing = (((double)nMinPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; } #undef X bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); LOCK(cs_vRecv); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { //store received bytes per message command //to prevent a memory DOS, only allow valid commands mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand); if (i == mapRecvBytesPerMsgCmd.end()) i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and // only one version message is allowed per session. We can therefore // treat this value as const and even atomic as long as it's only used // once a version message has been successfully processed. Any attempt to // set this twice is an error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to // INIT_PROTO_VERSION rather than using this value until SetSendVersion // has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write((const unsigned char*)pch, nCopy); memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } const uint256& CNetMessage::GetMessageHash() const { assert(complete()); if (data_hash.IsNull()) hasher.Finalize(data_hash.begin()); return data_hash; } // requires LOCK(cs_vSend) size_t CConnman::SocketSendData(CNode *pnode) const { auto it = pnode->vSendMsg.begin(); size_t nSentSize = 0; while (it != pnode->vSendMsg.end()) { const auto &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) break; nBytes = send(pnode->hSocket, reinterpret_cast(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes > 0) { pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); return nSentSize; } struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; CAddress addr; uint64_t nKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime; if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime; if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes; if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; return a.nTimeConnected > b.nTimeConnected; } //! Sort an array by the specified comparator, then erase the last K elements. template static void EraseLastKElements(std::vector &elements, Comparator comparator, size_t k) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(elements.end() - eraseSize, elements.end()); } /** Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker * triggered network partitioning. * The strategy used here is to protect a small number of peers * for each of several distinct characteristics which are difficult * to forge. In order to partition a node the attacker must be * simultaneously better at all of them than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (const CNode* node : vNodes) { if (node->fWhitelisted) continue; if (!node->fInbound) continue; if (node->fDisconnect) continue; NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, HasAllDesirableServiceFlags(node->nServices), node->fRelayTxes, node->pfilter != nullptr, node->addr, node->nKeyedNetGroup}; vEvictionCandidates.push_back(candidate); } } // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect the half of the remaining nodes which have been connected the longest. // This replicates the non-eviction implicit behavior, and precludes attacks that start later. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map > mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); int64_t grouptime = group[0].nTimeConnected; if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group.size(); nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (pnode->GetId() == evicted) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); if (hSocket != INVALID_SOCKET) { if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } } bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->fInbound) nInbound++; } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); return; } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); if (IsBanned(addr) && !whitelisted) { LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; m_msgproc->InitializeNode(pnode); LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::DisconnectNodes() { { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode* pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes std::vector vNodesCopy = vNodes; for (CNode* pnode : vNodesCopy) { if (pnode->fDisconnect) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (CNode* pnode : vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } } void CConnman::NotifyNumConnectionsChanged() { size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if(vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if(clientInterface) clientInterface->NotifyNumConnectionsChanged(vNodesSize); } } void CConnman::InactivityCheck(CNode *pnode) { int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint(BCLog::NET, "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId()); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } else if (!pnode->fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId()); pnode->fDisconnect = true; } } } void CConnman::SocketHandler() { // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; for (const ListenSocket& hListenSocket : vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, select() for // receiving data. // * Hand off all complete messages to the processor, to be handled without // blocking here. bool select_recv = !pnode->fPauseRecv; bool select_send; { LOCK(pnode->cs_vSend); select_send = !pnode->vSendMsg.empty(); } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, pnode->hSocket); have_fds = true; if (select_send) { FD_SET(pnode->hSocket, &fdsetSend); continue; } if (select_recv) { FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) return; if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000))) return; } // // Accept new connections // for (const ListenSocket& hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode* pnode : vNodesCopy) pnode->AddRef(); } for (CNode* pnode : vNodesCopy) { if (interruptNet) return; // // Receive // bool recvSet = false; bool sendSet = false; bool errorSet = false; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv); sendSet = FD_ISSET(pnode->hSocket, &fdsetSend); errorSet = FD_ISSET(pnode->hSocket, &fdsetError); } if (recvSet || errorSet) { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) pnode->CloseSocketDisconnect(); RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) break; nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed\n"); } pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } } // // Send // if (sendSet) { LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } InactivityCheck(pnode); } { LOCK(cs_vNodes); for (CNode* pnode : vNodesCopy) pnode->Release(); } } void CConnman::ThreadSocketHandler() { while (!interruptNet) { DisconnectNodes(); NotifyNumConnectionsChanged(); SocketHandler(); } } void CConnman::WakeMessageHandler() { { std::lock_guard lock(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } #ifdef USE_UPNP static CThreadInterrupt g_upnp_interrupt; static std::thread g_upnp_thread; static void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = nullptr; const char * minissdpdpath = nullptr; struct UPNPDev * devlist = nullptr; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { CNetAddr resolved; if(LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } std::string strDesc = "Bitcoin " + FormatFullVersion(); do { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n"); } while(g_upnp_interrupt.sleep_for(std::chrono::minutes(20))); r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = nullptr; FreeUPNPUrls(&urls); } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = nullptr; if (r != 0) FreeUPNPUrls(&urls); } } void StartMapPort() { if (!g_upnp_thread.joinable()) { assert(!g_upnp_interrupt); g_upnp_thread = std::thread((std::bind(&TraceThread, "upnp", &ThreadMapPort))); } } void InterruptMapPort() { if(g_upnp_thread.joinable()) { g_upnp_interrupt(); } } void StopMapPort() { if(g_upnp_thread.joinable()) { g_upnp_thread.join(); g_upnp_interrupt.reset(); } } #else void StartMapPort() { // Intentionally left blank. } void InterruptMapPort() { // Intentionally left blank. } void StopMapPort() { // Intentionally left blank. } #endif void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute // Avoiding DNS seeds when we don't need them improves user privacy by // creating fewer identifying DNS requests, reduces trust by giving seeds // less influence on the network topology, and reduces traffic to the seeds. if ((addrman.size() > 0) && (!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) return; LOCK(cs_vNodes); int nRelevant = 0; for (const CNode* pnode : vNodes) { nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound; } if (nRelevant >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const std::vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); for (const std::string &seed : vSeeds) { if (interruptNet) { return; } if (HaveNameProxy()) { AddOneShot(seed); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); std::string host = strprintf("x%x.%s", requiredServiceBits, seed); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed if (LookupHost(host.c_str(), vIPs, nMaxIPs, true)) { for (const CNetAddr& ip : vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); } else { // We now avoid directly using results from DNS Seeds which do not support service bit filtering, // instead using them as a oneshot to get nodes with our desired service bits. AddOneShot(seed); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit // Exclude peers that are marked for disconnect, or are going to be // disconnected soon (eg one-shots and feelers) // Also exclude peers that haven't finished initial connection handshake yet // (so that we don't decide we're over our desired connection limit, and then // evict some peer that has finished the handshake) int CConnman::GetExtraOutboundCount() { int nOutbound = 0; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected) { ++nOutbound; } } } return std::max(nOutbound - nMaxOutbound, 0); } void CConnman::ThreadOpenConnections(const std::vector connect) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); for (const std::string& strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; CSemaphoreGrant grant(*semOutbound); if (interruptNet) return; // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(Params().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). int nOutbound = 0; std::set > setConnected; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection) { // Netgroups for inbound and addnode peers are not excluded because our goal here // is to not use multiple of our limited outbound slots on a single netgroup // but inbound and addnode peers do not use our outbound slots. Inbound peers // also have the added issue that they're attacker controlled and could be used // to prevent us from connecting to particular hosts if we used them here. setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if we can connect // successfully it is added to tried. // * Start attempting feeler connections only after node finishes making outbound // connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) { int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } addrman.ResolveCollisions(); int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.SelectTriedCollision(); // SelectTriedCollision returns an invalid address if it is empty. if (!fFeeler || !addr.IsValid()) { addr = addrman.Select(fFeeler); } // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep))) return; LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } for (const std::string& strAddNode : lAddresses) { CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo& info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting // the addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } // Retry every 60 seconds if a connection was attempted, otherwise two seconds if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) return; } } // if successful, this moves the passed grant to the constructed node void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection) { // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { if (IsLocal(addrConnect) || FindNode(static_cast(addrConnect)) || IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return; } else if (FindNode(std::string(pszDest))) return; CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection); if (!pnode) return; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); if (fOneShot) pnode->fOneShot = true; if (fFeeler) pnode->fFeeler = true; if (manual_connection) pnode->m_manual_connection = true; m_msgproc->InitializeNode(pnode); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadMessageHandler() { while (!flagInterruptMsgProc) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode* pnode : vNodesCopy) { pnode->AddRef(); } } bool fMoreWork = false; for (CNode* pnode : vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) return; // Send messages { LOCK(pnode->cs_sendProcessing); m_msgproc->SendMessages(pnode); } if (flagInterruptMsgProc) return; } { LOCK(cs_vNodes); for (CNode* pnode : vNodesCopy) pnode->Release(); } WAIT_LOCK(mutexMsgProc, lock); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = CreateSocket(addrBind); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void Discover() { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In) { fNetworkActive = true; setBannedIsDirty = false; fAddressesInitialized = false; nLastNodeId = 0; nPrevNodeCount = 0; nSendBufferMaxSize = 0; nReceiveFloodSize = 0; flagInterruptMsgProc = false; SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1, std::memory_order_relaxed); } bool CConnman::Bind(const CService &addr, unsigned int flags) { if (!(flags & BF_EXPLICIT) && IsLimited(addr)) return false; std::string strError; if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR); } return false; } return true; } bool CConnman::InitBinds(const std::vector& binds, const std::vector& whiteBinds) { bool fBound = false; for (const auto& addrBind : binds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR)); } for (const auto& addrBind : whiteBinds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST)); } if (binds.empty() && whiteBinds.empty()) { struct in_addr inaddr_any; inaddr_any.s_addr = INADDR_ANY; struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE); } return fBound; } bool CConnman::Start(CScheduler& scheduler, const Options& connOptions) { Init(connOptions); { LOCK(cs_totalBytesRecv); nTotalBytesRecv = 0; } { LOCK(cs_totalBytesSent); nTotalBytesSent = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundCycleStartTime = 0; } if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want this."), "", CClientUIInterface::MSG_ERROR); } return false; } for (const auto& strDest : connOptions.vSeedNodes) { AddOneShot(strDest); } if (clientInterface) { clientInterface->InitMessage(_("Loading P2P addresses...")); } // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (adb.Read(addrman)) LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); else { addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } if (clientInterface) clientInterface->InitMessage(_("Loading banlist...")); // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; if (bandb.Read(banmap)) { SetBanned(banmap); // thread save setter SetBannedSetDirty(false); // no need to write down, just read data SweepBanned(); // sweep out unused entries LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); SetBannedSetDirty(true); // force write DumpBanlist(); } uiInterface.InitMessage(_("Starting network threads...")); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = MakeUnique(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = MakeUnique(nMaxAddnode); } // // Start threads // assert(m_msgproc); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { LOCK(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread(&TraceThread >, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!gArgs.GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadDNSAddressSeed = std::thread(&TraceThread >, "dnsseed", std::function(std::bind(&CConnman::ThreadDNSAddressSeed, this))); // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread >, "addcon", std::function(std::bind(&CConnman::ThreadOpenAddedConnections, this))); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) threadOpenConnections = std::thread(&TraceThread >, "opencon", std::function(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing))); // Process messages threadMessageHandler = std::thread(&TraceThread >, "msghand", std::function(std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CConnman::Interrupt() { { std::lock_guard lock(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) { semOutbound->post(); } } if (semAddnode) { for (int i=0; ipost(); } } } void CConnman::Stop() { if (threadMessageHandler.joinable()) threadMessageHandler.join(); if (threadOpenConnections.joinable()) threadOpenConnections.join(); if (threadOpenAddedConnections.joinable()) threadOpenAddedConnections.join(); if (threadDNSAddressSeed.joinable()) threadDNSAddressSeed.join(); if (threadSocketHandler.joinable()) threadSocketHandler.join(); if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } // Close sockets for (CNode* pnode : vNodes) pnode->CloseSocketDisconnect(); for (ListenSocket& hListenSocket : vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) for (CNode *pnode : vNodes) { DeleteNode(pnode); } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); } void CConnman::DeleteNode(CNode* pnode) { assert(pnode); bool fUpdateConnectionTime = false; m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime); if(fUpdateConnectionTime) { addrman.Connected(pnode->addr); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress& addr) { addrman.Good(addr); } void CConnman::AddNewAddresses(const std::vector& vAddr, const CAddress& addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for (const std::string& it : vAddedNodes) { if (strNode == it) return false; } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for(std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total return vNodes.size(); int nNum = 0; for (const auto& pnode : vNodes) { if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void CConnman::GetNodeStats(std::vector& vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode* pnode : vNodes) { vstats.emplace_back(); pnode->copyStats(vstats.back()); } } bool CConnman::DisconnectNode(const std::string& strNode) { LOCK(cs_vNodes); if (CNode* pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for(CNode* pnode : vNodes) { if (id == pnode->GetId()) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); nMaxOutboundLimit = limit; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; if (nMaxOutboundCycleStartTime == 0) return nMaxOutboundTimeframe; uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing // the timeframe nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return false; if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) return true; } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) return true; return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string& addrNameIn, bool fInboundIn) : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn), addrBind(addrBindIn), fInbound(fInboundIn), nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001), id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn), nSendVersion(0) { nServices = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeOffset = 0; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; m_manual_connection = false; fClient = false; // set by version message m_limited_node = false; // set by version message fFeeler = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; nNextInvSend = 0; fRelayTxes = false; fSentAddr = false; pfilter = MakeUnique(); timeLastMempoolReq = 0; nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nMinPingUsecTime = std::numeric_limits::max(); minFeeFilter = 0; lastSentFeeFilter = 0; nextSendTimeFeeFilter = 0; fPauseRecv = false; fPauseSend = false; nProcessQueueSize = 0; for (const std::string &msg : getAllNetMessageTypes()) mapRecvBytesPerMsgCmd[msg] = 0; mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } } CNode::~CNode() { CloseSocket(hSocket); } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) return; // a peer may not have multiple non-responded queue positions for a single inv item if (!setAskFor.insert(inv.hash).second) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv.hash); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint(BCLog::NET, "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, FormatISO8601Time(nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } bool CConnman::NodeFullyConnected(const CNode* pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg) { size_t nMessageSize = msg.data.size(); size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId()); std::vector serializedHeader; serializedHeader.reserve(CMessageHeader::HEADER_SIZE); uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool optimisticSend(pnode->vSendMsg.empty()); //log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true; pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) pnode->vSendMsg.push_back(std::move(msg.data)); // If write queue empty, attempt "optimistic write" if (optimisticSend == true) nBytesSent = SocketSendData(pnode); } if (nBytesSent) RecordBytesSent(nBytesSent); } bool CConnman::ForNode(NodeId id, std::function func) { CNode* found = nullptr; LOCK(cs_vNodes); for (auto&& pnode : vNodes) { if(pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && NodeFullyConnected(found) && func(found); } int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds) { if (m_next_send_inv_to_incoming < now) { // If this function were called from multiple threads simultaneously // it would possible that both update the next send variable, and return a different result to their caller. // This is not possible in practice as only the net processing thread invokes this function. m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds); } return m_next_send_inv_to_incoming; } int64_t PoissonNextSend(int64_t now, int average_interval_seconds) { return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const { std::vector vchNetGroup(ad.GetGroup()); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize(); }