// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "consensus/consensus.h" #include "crypto/common.h" #include "crypto/sha256.h" #include "hash.h" #include "primitives/transaction.h" #include "netbase.h" #include "scheduler.h" #include "ui_interface.h" #include "utilstrencodings.h" #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include #include #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. #define FEELER_SLEEP_WINDOW 1 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif namespace { const int MAX_OUTBOUND_CONNECTIONS = 8; const int MAX_FEELER_CONNECTIONS = 1; } const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; /** Services this node implementation cares about */ ServiceFlags nRelevantServices = NODE_NETWORK; // // Global state variables // bool fDiscover = true; bool fListen = true; ServiceFlags nLocalServices = NODE_NETWORK; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; uint64_t nLocalHostNonce = 0; static std::vector vhListenSocket; CAddrMan addrman; int nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS; bool fAddressesInitialized = false; std::string strSubVersion; std::vector vNodes; CCriticalSection cs_vNodes; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); static std::deque vOneShots; CCriticalSection cs_vOneShots; std::vector vAddedNodes; CCriticalSection cs_vAddedNodes; NodeId nLastNodeId = 0; CCriticalSection cs_nLastNodeId; static CSemaphore *semOutbound = NULL; boost::condition_variable messageHandlerCondition; // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } void AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (std::map::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeeds6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (std::vector::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i) { struct in6_addr ip; memcpy(&ip, i->addr, sizeof(ip)); CAddress addr(CService(ip, i->port), NODE_NETWORK); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer) { CAddress ret(CService(CNetAddr(),GetListenPort()), NODE_NONE); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() && !IsLimited(pnode->addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr); // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->addrLocal); } if (addrLocal.IsRoutable()) { LogPrint("net", "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); pnode->PushAddress(addrLocal); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } bool RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); return true; } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } void AddressCurrentlyConnected(const CService& addr) { addrman.Connected(addr); } uint64_t CNode::nTotalBytesRecv = 0; uint64_t CNode::nTotalBytesSent = 0; CCriticalSection CNode::cs_totalBytesRecv; CCriticalSection CNode::cs_totalBytesSent; uint64_t CNode::nMaxOutboundLimit = 0; uint64_t CNode::nMaxOutboundTotalBytesSentInCycle = 0; uint64_t CNode::nMaxOutboundTimeframe = 60*60*24; //1 day uint64_t CNode::nMaxOutboundCycleStartTime = 0; CNode* FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CNetAddr)pnode->addr == ip) return (pnode); return NULL; } CNode* FindNode(const CSubNet& subNet) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (subNet.Match((CNetAddr)pnode->addr)) return (pnode); return NULL; } CNode* FindNode(const std::string& addrName) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->addrName == addrName) return (pnode); return NULL; } CNode* FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CService)pnode->addr == addr) return (pnode); return NULL; } //TODO: This is used in only one place in main, and should be removed CNode* FindNode(const NodeId nodeid) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->GetId() == nodeid) return (pnode); return NULL; } CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure) { if (pszDest == NULL) { if (IsLocal(addrConnect)) return NULL; // Look for an existing connection CNode* pnode = FindNode((CService)addrConnect); if (pnode) { pnode->AddRef(); return pnode; } } /// debug print LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; bool proxyConnectionFailed = false; if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) : ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed)) { if (!IsSelectableSocket(hSocket)) { LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n"); CloseSocket(hSocket); return NULL; } if (pszDest && addrConnect.IsValid()) { // It is possible that we already have a connection to the IP/port pszDest resolved to. // In that case, drop the connection that was just created, and return the existing CNode instead. // Also store the name we used to connect in that CNode, so that future FindNode() calls to that // name catch this early. CNode* pnode = FindNode((CService)addrConnect); if (pnode) { pnode->AddRef(); { LOCK(cs_vNodes); if (pnode->addrName.empty()) { pnode->addrName = std::string(pszDest); } } CloseSocket(hSocket); return pnode; } } addrman.Attempt(addrConnect, fCountFailure); // Add node CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false); pnode->AddRef(); { LOCK(cs_vNodes); vNodes.push_back(pnode); } pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices); pnode->nTimeConnected = GetTime(); return pnode; } else if (!proxyConnectionFailed) { // If connecting to the node failed, and failure is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect, fCountFailure); } return NULL; } static void DumpBanlist() { CNode::SweepBanned(); // clean unused entries (if bantime has expired) if (!CNode::BannedSetIsDirty()) return; int64_t nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; CNode::SetBannedSetDirty(false); CNode::GetBanned(banmap); if (!bandb.Write(banmap)) CNode::SetBannedSetDirty(true); LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect() { fDisconnect = true; if (hSocket != INVALID_SOCKET) { LogPrint("net", "disconnecting peer=%d\n", id); CloseSocket(hSocket); } // in case this fails, we'll empty the recv buffer when the CNode is deleted TRY_LOCK(cs_vRecvMsg, lockRecv); if (lockRecv) vRecvMsg.clear(); } void CNode::PushVersion() { int nBestHeight = GetNodeSignals().GetHeight().get_value_or(0); int64_t nTime = (fInbound ? GetAdjustedTime() : GetTime()); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = GetLocalAddress(&addr); GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id); PushMessage(NetMsgType::VERSION, PROTOCOL_VERSION, (uint64_t)nLocalServices, nTime, addrYou, addrMe, nLocalHostNonce, strSubVersion, nBestHeight, ::fRelayTxes); } banmap_t CNode::setBanned; CCriticalSection CNode::cs_setBanned; bool CNode::setBannedIsDirty; void CNode::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk uiInterface.BannedListChanged(); } bool CNode::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil) fResult = true; } } return fResult; } bool CNode::IsBanned(CSubNet subnet) { bool fResult = false; { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) fResult = true; } } return fResult; } void CNode::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CNode::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else return; } uiInterface.BannedListChanged(); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (subNet.Match((CNetAddr)pnode->addr)) pnode->fDisconnect = true; } } if(banReason == BanReasonManuallyAdded) DumpBanlist(); //store banlist to disk immediately if user requested ban } bool CNode::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CNode::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) return false; setBannedIsDirty = true; } uiInterface.BannedListChanged(); DumpBanlist(); //store banlist to disk immediately return true; } void CNode::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); banMap = setBanned; //create a thread safe copy } void CNode::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CNode::SweepBanned() { int64_t now = GetTime(); LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while(it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else ++it; } } bool CNode::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CNode::SetBannedSetDirty(bool dirty) { LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag setBannedIsDirty = dirty; } std::vector CNode::vWhitelistedRange; CCriticalSection CNode::cs_vWhitelistedRange; bool CNode::IsWhitelistedRange(const CNetAddr &addr) { LOCK(cs_vWhitelistedRange); BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } void CNode::AddWhitelistedRange(const CSubNet &subnet) { LOCK(cs_vWhitelistedRange); vWhitelistedRange.push_back(subnet); } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(fRelayTxes); X(nLastSend); X(nLastRecv); X(nTimeConnected); X(nTimeOffset); X(addrName); X(nVersion); X(cleanSubVer); X(fInbound); X(nStartingHeight); X(nSendBytes); X(mapSendBytesPerMsgCmd); X(nRecvBytes); X(mapRecvBytesPerMsgCmd); X(fWhitelisted); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dPingMin = (((double)nMinPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; } #undef X // requires LOCK(cs_vRecvMsg) bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes) { while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { //store received bytes per message command //to prevent a memory DOS, only allow valid commands mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand); if (i == mapRecvBytesPerMsgCmd.end()) i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = GetTimeMicros(); messageHandlerCondition.notify_one(); } } return true; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) void SocketSendData(CNode *pnode) { std::deque::iterator it = pnode->vSendMsg.begin(); while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); if (nBytes > 0) { pnode->nLastSend = GetTime(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; pnode->RecordBytesSent(nBytes); if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); } static std::list vNodesDisconnected; struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fNetworkNode; bool fRelayTxes; bool fBloomFilter; CAddress addr; uint64_t nKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime; if (a.fNetworkNode != b.fNetworkNode) return b.fNetworkNode; return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime; if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes; if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; return a.nTimeConnected > b.nTimeConnected; } /** Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker * triggered network partitioning. * The strategy used here is to protect a small number of peers * for each of several distinct characteristics which are difficult * to forge. In order to partition a node the attacker must be * simultaneously better at all of them than honest peers. */ static bool AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); BOOST_FOREACH(CNode *node, vNodes) { if (node->fWhitelisted) continue; if (!node->fInbound) continue; if (node->fDisconnect) continue; NodeEvictionCandidate candidate = {node->id, node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, node->fNetworkNode, node->fRelayTxes, node->pfilter != NULL, node->addr, node->nKeyedNetGroup}; vEvictionCandidates.push_back(candidate); } } if (vEvictionCandidates.empty()) return false; // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNetGroupKeyed); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the half of the remaining nodes which have been connected the longest. // This replicates the non-eviction implicit behavior, and precludes attacks that start later. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected); vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast(vEvictionCandidates.size() / 2), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map > mapNetGroupNodes; BOOST_FOREACH(const NodeEvictionCandidate &node, vEvictionCandidates) { mapNetGroupNodes[node.nKeyedNetGroup].push_back(node); int64_t grouptime = mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected; size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size(); if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = groupsize; nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for(std::vector::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) { if ((*it)->GetId() == evicted) { (*it)->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS); assert(nMaxInbound > 0); if (hSocket != INVALID_SOCKET) if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) LogPrintf("Warning: Unknown socket family\n"); bool whitelisted = hListenSocket.whitelisted || CNode::IsWhitelistedRange(addr); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->fInbound) nInbound++; } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. int set = 1; #ifdef WIN32 setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); #else setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); #endif if (CNode::IsBanned(addr) && !whitelisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } } CNode* pnode = new CNode(hSocket, addr, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; LogPrint("net", "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (true) { // // Disconnect nodes // { LOCK(cs_vNodes); // Disconnect unused nodes std::vector vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect || (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty())) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); delete pnode; } } } } if(vNodes.size() != nPrevNodeCount) { nPrevNodeCount = vNodes.size(); uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount); } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is no (complete) message in the receive buffer, // or there is space left in the buffer, select() for receiving data. // * (if neither of the above applies, there is certainly one message // in the receiver buffer ready to be processed). // Together, that means that at least one of the following is always possible, // so we don't deadlock: // * We send some data. // * We wait for data to be received (and disconnect after timeout). // * We process a message in the buffer (message handler thread). { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend && !pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv && ( pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() || pnode->GetTotalRecvSize() <= ReceiveFloodSize())) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); boost::this_thread::interruption_point(); if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); MilliSleep(timeout.tv_usec/1000); } // // Accept new connections // BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->AddRef(); } BOOST_FOREACH(CNode* pnode, vNodesCopy) { boost::this_thread::interruption_point(); // // Receive // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError)) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); if (nBytes > 0) { if (!pnode->ReceiveMsgBytes(pchBuf, nBytes)) pnode->CloseSocketDisconnect(); pnode->nLastRecv = GetTime(); pnode->nRecvBytes += nBytes; pnode->RecordBytesRecv(nBytes); } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) LogPrint("net", "socket closed\n"); pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } } } } // // Send // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetSend)) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) SocketSendData(pnode); } // // Inactivity checking // int64_t nTime = GetTime(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } } } #ifdef USE_UPNP void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = 0; const char * minissdpdpath = 0; struct UPNPDev * devlist = 0; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { CNetAddr resolved; if(LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } std::string strDesc = "Bitcoin " + FormatFullVersion(); try { while (true) { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n"); MilliSleep(20*60*1000); // Refresh every 20 minutes } } catch (const boost::thread_interrupted&) { r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = 0; FreeUPNPUrls(&urls); throw; } } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = 0; if (r != 0) FreeUPNPUrls(&urls); } } void MapPort(bool fUseUPnP) { static boost::thread* upnp_thread = NULL; if (fUseUPnP) { if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; } upnp_thread = new boost::thread(boost::bind(&TraceThread, "upnp", &ThreadMapPort)); } else if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; upnp_thread = NULL; } } #else void MapPort(bool) { // Intentionally left blank. } #endif static std::string GetDNSHost(const CDNSSeedData& data, ServiceFlags* requiredServiceBits) { //use default host for non-filter-capable seeds or if we use the default service bits (NODE_NETWORK) if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) { *requiredServiceBits = NODE_NETWORK; return data.host; } return strprintf("x%x.%s", *requiredServiceBits, data.host); } void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute if ((addrman.size() > 0) && (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { MilliSleep(11 * 1000); LOCK(cs_vNodes); if (vNodes.size() >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const std::vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = nRelevantServices; if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs, 0, true)) { BOOST_FOREACH(const CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } } // TODO: The seed name resolve may fail, yielding an IP of [::], which results in // addrman assigning the same source to results from different seeds. // This should switch to a hard-coded stable dummy IP for each seed name, so that the // resolve is not required at all. if (!vIPs.empty()) { CService seedSource; Lookup(seed.name.c_str(), seedSource, 0, true); addrman.Add(vAdd, seedSource); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } void CConnman::ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"]) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { MilliSleep(500); } } MilliSleep(500); } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); while (true) { ProcessOneShot(); MilliSleep(500); CSemaphoreGrant grant(*semOutbound); boost::this_thread::interruption_point(); // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); CNetAddr local; LookupHost("127.0.0.1", local, false); addrman.Add(convertSeed6(Params().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. int nOutbound = 0; std::set > setConnected; { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound) { setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } assert(nOutbound <= (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS)); // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if we can connect // successfully it is added to tried. // * Start attempting feeler connections only after node finishes making outbound // connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= MAX_OUTBOUND_CONNECTIONS) { int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } int64_t nANow = GetAdjustedTime(); int nTries = 0; while (true) { CAddrInfo addr = addrman.Select(fFeeler); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only connect to full nodes if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // only consider nodes missing relevant services after 40 failed attempts if ((addr.nServices & nRelevantServices) != nRelevantServices && nTries < 40) continue; // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); MilliSleep(randsleep); LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString()); } OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, NULL, false, fFeeler); } } } std::vector GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } if (!pnode->addrName.empty()) { mapConnectedByName[pnode->addrName] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } BOOST_FOREACH(const std::string& strAddNode, lAddresses) { CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second}); } else { ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first}); } else { ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); } } } return ret; } void CConnman::ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } for (unsigned int i = 0; true; i++) { std::vector vInfo = GetAddedNodeInfo(); for (const AddedNodeInfo& info : vInfo) { if (!info.fConnected) { CSemaphoreGrant grant(*semOutbound); // If strAddedNode is an IP/port, decode it immediately, so // OpenNetworkConnection can detect existing connections to that IP/port. CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort())); OpenNetworkConnection(CAddress(service, NODE_NONE), false, &grant, info.strAddedNode.c_str(), false); MilliSleep(500); } } MilliSleep(120000); // Retry every 2 minutes } } // if successful, this moves the passed grant to the constructed node bool OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler) { // // Initiate outbound network connection // boost::this_thread::interruption_point(); if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || CNode::IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(std::string(pszDest))) return false; CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure); boost::this_thread::interruption_point(); if (!pnode) return false; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); pnode->fNetworkNode = true; if (fOneShot) pnode->fOneShot = true; if (fFeeler) pnode->fFeeler = true; return true; } void CConnman::ThreadMessageHandler() { boost::mutex condition_mutex; boost::unique_lock lock(condition_mutex); while (true) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { pnode->AddRef(); } } bool fSleep = true; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { if (!GetNodeSignals().ProcessMessages(pnode)) pnode->CloseSocketDisconnect(); if (pnode->nSendSize < SendBufferSize()) { if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete())) { fSleep = false; } } } } boost::this_thread::interruption_point(); // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) GetNodeSignals().SendMessages(pnode); } boost::this_thread::interruption_point(); } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } if (fSleep) messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100)); } } bool BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } if (!IsSelectableSocket(hListenSocket)) { strError = "Error: Couldn't create a listenable socket for incoming connections"; LogPrintf("%s\n", strError); return false; } #ifndef WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); // Disable Nagle's algorithm setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int)); setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int)); #endif // Set to non-blocking, incoming connections will also inherit this if (!SetSocketNonBlocking(hListenSocket, true)) { strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void static Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } CConnman::CConnman() { } bool StartNode(CConnman& connman, boost::thread_group& threadGroup, CScheduler& scheduler, std::string& strNodeError) { uiInterface.InitMessage(_("Loading addresses...")); // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (adb.Read(addrman)) LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); else { addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } uiInterface.InitMessage(_("Loading banlist...")); // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; if (bandb.Read(banmap)) { CNode::SetBanned(banmap); // thread save setter CNode::SetBannedSetDirty(false); // no need to write down, just read data CNode::SweepBanned(); // sweep out unused entries LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); CNode::SetBannedSetDirty(true); // force write DumpBanlist(); } uiInterface.InitMessage(_("Starting network threads...")); fAddressesInitialized = true; Discover(threadGroup); bool ret = connman.Start(threadGroup, strNodeError); // Dump network addresses scheduler.scheduleEvery(DumpData, DUMP_ADDRESSES_INTERVAL); return ret; } bool CConnman::Start(boost::thread_group& threadGroup, std::string& strNodeError) { if (semOutbound == NULL) { // initialize semaphore int nMaxOutbound = std::min((MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS), nMaxConnections); semOutbound = new CSemaphore(nMaxOutbound); } if (pnodeLocalHost == NULL) { CNetAddr local; LookupHost("127.0.0.1", local, false); pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService(local, 0), nLocalServices)); } // // Start threads // if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadGroup.create_thread(boost::bind(&TraceThread >, "dnsseed", boost::function(boost::bind(&CConnman::ThreadDNSAddressSeed, this)))); // Map ports with UPnP MapPort(GetBoolArg("-upnp", DEFAULT_UPNP)); // Send and receive from sockets, accept connections threadGroup.create_thread(boost::bind(&TraceThread >, "net", boost::function(boost::bind(&CConnman::ThreadSocketHandler, this)))); // Initiate outbound connections from -addnode threadGroup.create_thread(boost::bind(&TraceThread >, "addcon", boost::function(boost::bind(&CConnman::ThreadOpenAddedConnections, this)))); // Initiate outbound connections threadGroup.create_thread(boost::bind(&TraceThread >, "opencon", boost::function(boost::bind(&CConnman::ThreadOpenConnections, this)))); // Process messages threadGroup.create_thread(boost::bind(&TraceThread >, "msghand", boost::function(boost::bind(&CConnman::ThreadMessageHandler, this)))); return true; } bool StopNode(CConnman& connman) { LogPrintf("StopNode()\n"); MapPort(false); if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } connman.Stop(); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CConnman::Stop() { if (semOutbound) for (int i=0; i<(MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS); i++) semOutbound->post(); // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) delete pnode; BOOST_FOREACH(CNode *pnode, vNodesDisconnected) delete pnode; vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete pnodeLocalHost; pnodeLocalHost = NULL; } CConnman::~CConnman() { } void RelayTransaction(const CTransaction& tx) { CInv inv(MSG_TX, tx.GetHash()); LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { pnode->PushInventory(inv); } } void CNode::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CNode::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CNode::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); uint64_t recommendedMinimum = (nMaxOutboundTimeframe / 600) * MAX_BLOCK_SERIALIZED_SIZE; nMaxOutboundLimit = limit; if (limit > 0 && limit < recommendedMinimum) LogPrintf("Max outbound target is very small (%s bytes) and will be overshot. Recommended minimum is %s bytes.\n", nMaxOutboundLimit, recommendedMinimum); } uint64_t CNode::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CNode::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CNode::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; if (nMaxOutboundCycleStartTime == 0) return nMaxOutboundTimeframe; uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CNode::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing // the timeframe nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CNode::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return false; if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) return true; } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) return true; return false; } uint64_t CNode::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CNode::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CNode::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } void CNode::Fuzz(int nChance) { if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages switch (GetRand(3)) { case 0: // xor a random byte with a random value: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend[pos] ^= (unsigned char)(GetRand(256)); } break; case 1: // delete a random byte: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend.erase(ssSend.begin()+pos); } break; case 2: // insert a random byte at a random position { CDataStream::size_type pos = GetRand(ssSend.size()); char ch = (char)GetRand(256); ssSend.insert(ssSend.begin()+pos, ch); } break; } // Chance of more than one change half the time: // (more changes exponentially less likely): Fuzz(2); } unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", DEFAULT_MAXRECEIVEBUFFER); } unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", DEFAULT_MAXSENDBUFFER); } CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn) : ssSend(SER_NETWORK, INIT_PROTO_VERSION), addr(addrIn), nKeyedNetGroup(CalculateKeyedNetGroup(addrIn)), addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001) { nServices = NODE_NONE; nServicesExpected = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeConnected = GetTime(); nTimeOffset = 0; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; fClient = false; // set by version message fFeeler = false; fInbound = fInboundIn; fNetworkNode = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; nNextInvSend = 0; fRelayTxes = false; fSentAddr = false; pfilter = new CBloomFilter(); timeLastMempoolReq = 0; nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nMinPingUsecTime = std::numeric_limits::max(); minFeeFilter = 0; lastSentFeeFilter = 0; nextSendTimeFeeFilter = 0; BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes()) mapRecvBytesPerMsgCmd[msg] = 0; mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; { LOCK(cs_nLastNodeId); id = nLastNodeId++; } if (fLogIPs) LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); else LogPrint("net", "Added connection peer=%d\n", id); // Be shy and don't send version until we hear if (hSocket != INVALID_SOCKET && !fInbound) PushVersion(); GetNodeSignals().InitializeNode(GetId(), this); } CNode::~CNode() { CloseSocket(hSocket); if (pfilter) delete pfilter; GetNodeSignals().FinalizeNode(GetId()); } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) return; // a peer may not have multiple non-responded queue positions for a single inv item if (!setAskFor.insert(inv.hash).second) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv.hash); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend) { ENTER_CRITICAL_SECTION(cs_vSend); assert(ssSend.size() == 0); ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0); LogPrint("net", "sending: %s ", SanitizeString(pszCommand)); } void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend) { ssSend.clear(); LEAVE_CRITICAL_SECTION(cs_vSend); LogPrint("net", "(aborted)\n"); } void CNode::EndMessage(const char* pszCommand) UNLOCK_FUNCTION(cs_vSend) { // The -*messagestest options are intentionally not documented in the help message, // since they are only used during development to debug the networking code and are // not intended for end-users. if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0) { LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n"); AbortMessage(); return; } if (mapArgs.count("-fuzzmessagestest")) Fuzz(GetArg("-fuzzmessagestest", 10)); if (ssSend.size() == 0) { LEAVE_CRITICAL_SECTION(cs_vSend); return; } // Set the size unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE; WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize); //log total amount of bytes per command mapSendBytesPerMsgCmd[std::string(pszCommand)] += nSize + CMessageHeader::HEADER_SIZE; // Set the checksum uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end()); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum)); memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum)); LogPrint("net", "(%d bytes) peer=%d\n", nSize, id); std::deque::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData()); ssSend.GetAndClear(*it); nSendSize += (*it).size(); // If write queue empty, attempt "optimistic write" if (it == vSendMsg.begin()) SocketSendData(this); LEAVE_CRITICAL_SECTION(cs_vSend); } int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) { return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } /* static */ uint64_t CNode::CalculateKeyedNetGroup(const CAddress& ad) { static const uint64_t k0 = GetRand(std::numeric_limits::max()); static const uint64_t k1 = GetRand(std::numeric_limits::max()); std::vector vchNetGroup(ad.GetGroup()); return CSipHasher(k0, k1).Write(&vchNetGroup[0], vchNetGroup.size()).Finalize(); }