// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "miner.h" #include "amount.h" #include "chainparams.h" #include "consensus/consensus.h" #include "hash.h" #include "main.h" #include "net.h" #include "pow.h" #include "primitives/transaction.h" #include "timedata.h" #include "util.h" #include "utilmoneystr.h" #ifdef ENABLE_WALLET #include "wallet/wallet.h" #endif #include #include using namespace std; ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // // // Unconfirmed transactions in the memory pool often depend on other // transactions in the memory pool. When we select transactions from the // pool, we select by highest priority or fee rate, so we might consider // transactions that depend on transactions that aren't yet in the block. // The COrphan class keeps track of these 'temporary orphans' while // CreateBlock is figuring out which transactions to include. // class COrphan { public: const CTransaction* ptx; set setDependsOn; CFeeRate feeRate; double dPriority; COrphan(const CTransaction* ptxIn) : ptx(ptxIn), feeRate(0), dPriority(0) { } }; uint64_t nLastBlockTx = 0; uint64_t nLastBlockSize = 0; // We want to sort transactions by priority and fee rate, so: typedef boost::tuple TxPriority; class TxPriorityCompare { bool byFee; public: TxPriorityCompare(bool _byFee) : byFee(_byFee) { } bool operator()(const TxPriority& a, const TxPriority& b) { if (byFee) { if (a.get<1>() == b.get<1>()) return a.get<0>() < b.get<0>(); return a.get<1>() < b.get<1>(); } else { if (a.get<0>() == b.get<0>()) return a.get<1>() < b.get<1>(); return a.get<0>() < b.get<0>(); } } }; void UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { pblock->nTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); // Updating time can change work required on testnet: if (consensusParams.fPowAllowMinDifficultyBlocks) pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams); } CBlockTemplate* CreateNewBlock(const CScript& scriptPubKeyIn) { const CChainParams& chainparams = Params(); // Create new block auto_ptr pblocktemplate(new CBlockTemplate()); if(!pblocktemplate.get()) return NULL; CBlock *pblock = &pblocktemplate->block; // pointer for convenience // -regtest only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (Params().MineBlocksOnDemand()) pblock->nVersion = GetArg("-blockversion", pblock->nVersion); // Create coinbase tx CMutableTransaction txNew; txNew.vin.resize(1); txNew.vin[0].prevout.SetNull(); txNew.vout.resize(1); txNew.vout[0].scriptPubKey = scriptPubKeyIn; // Add dummy coinbase tx as first transaction pblock->vtx.push_back(CTransaction()); pblocktemplate->vTxFees.push_back(-1); // updated at end pblocktemplate->vTxSigOps.push_back(-1); // updated at end // Largest block you're willing to create: unsigned int nBlockMaxSize = GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE); // Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity: nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize)); // How much of the block should be dedicated to high-priority transactions, // included regardless of the fees they pay unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE); nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize); // Minimum block size you want to create; block will be filled with free transactions // until there are no more or the block reaches this size: unsigned int nBlockMinSize = GetArg("-blockminsize", DEFAULT_BLOCK_MIN_SIZE); nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize); // Collect memory pool transactions into the block CAmount nFees = 0; { LOCK2(cs_main, mempool.cs); CBlockIndex* pindexPrev = chainActive.Tip(); const int nHeight = pindexPrev->nHeight + 1; pblock->nTime = GetAdjustedTime(); CCoinsViewCache view(pcoinsTip); // Priority order to process transactions list vOrphan; // list memory doesn't move map > mapDependers; bool fPrintPriority = GetBoolArg("-printpriority", false); // This vector will be sorted into a priority queue: vector vecPriority; vecPriority.reserve(mempool.mapTx.size()); for (map::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { const CTransaction& tx = mi->second.GetTx(); if (tx.IsCoinBase() || !IsFinalTx(tx, nHeight, pblock->nTime)) continue; COrphan* porphan = NULL; double dPriority = 0; CAmount nTotalIn = 0; bool fMissingInputs = false; BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Read prev transaction if (!view.HaveCoins(txin.prevout.hash)) { // This should never happen; all transactions in the memory // pool should connect to either transactions in the chain // or other transactions in the memory pool. if (!mempool.mapTx.count(txin.prevout.hash)) { LogPrintf("ERROR: mempool transaction missing input\n"); if (fDebug) assert("mempool transaction missing input" == 0); fMissingInputs = true; if (porphan) vOrphan.pop_back(); break; } // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); nTotalIn += mempool.mapTx[txin.prevout.hash].GetTx().vout[txin.prevout.n].nValue; continue; } const CCoins* coins = view.AccessCoins(txin.prevout.hash); assert(coins); CAmount nValueIn = coins->vout[txin.prevout.n].nValue; nTotalIn += nValueIn; int nConf = nHeight - coins->nHeight; dPriority += (double)nValueIn * nConf; } if (fMissingInputs) continue; // Priority is sum(valuein * age) / modified_txsize unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); dPriority = tx.ComputePriority(dPriority, nTxSize); uint256 hash = tx.GetHash(); mempool.ApplyDeltas(hash, dPriority, nTotalIn); CFeeRate feeRate(nTotalIn-tx.GetValueOut(), nTxSize); if (porphan) { porphan->dPriority = dPriority; porphan->feeRate = feeRate; } else vecPriority.push_back(TxPriority(dPriority, feeRate, &mi->second.GetTx())); } // Collect transactions into block uint64_t nBlockSize = 1000; uint64_t nBlockTx = 0; int nBlockSigOps = 100; bool fSortedByFee = (nBlockPrioritySize <= 0); TxPriorityCompare comparer(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); while (!vecPriority.empty()) { // Take highest priority transaction off the priority queue: double dPriority = vecPriority.front().get<0>(); CFeeRate feeRate = vecPriority.front().get<1>(); const CTransaction& tx = *(vecPriority.front().get<2>()); std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer); vecPriority.pop_back(); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); if (nBlockSize + nTxSize >= nBlockMaxSize) continue; // Legacy limits on sigOps: unsigned int nTxSigOps = GetLegacySigOpCount(tx); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Skip free transactions if we're past the minimum block size: const uint256& hash = tx.GetHash(); double dPriorityDelta = 0; CAmount nFeeDelta = 0; mempool.ApplyDeltas(hash, dPriorityDelta, nFeeDelta); if (fSortedByFee && (dPriorityDelta <= 0) && (nFeeDelta <= 0) && (feeRate < ::minRelayTxFee) && (nBlockSize + nTxSize >= nBlockMinSize)) continue; // Prioritise by fee once past the priority size or we run out of high-priority // transactions: if (!fSortedByFee && ((nBlockSize + nTxSize >= nBlockPrioritySize) || !AllowFree(dPriority))) { fSortedByFee = true; comparer = TxPriorityCompare(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); } if (!view.HaveInputs(tx)) continue; CAmount nTxFees = view.GetValueIn(tx)-tx.GetValueOut(); nTxSigOps += GetP2SHSigOpCount(tx, view); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Note that flags: we don't want to set mempool/IsStandard() // policy here, but we still have to ensure that the block we // create only contains transactions that are valid in new blocks. CValidationState state; if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true)) continue; UpdateCoins(tx, state, view, nHeight); // Added pblock->vtx.push_back(tx); pblocktemplate->vTxFees.push_back(nTxFees); pblocktemplate->vTxSigOps.push_back(nTxSigOps); nBlockSize += nTxSize; ++nBlockTx; nBlockSigOps += nTxSigOps; nFees += nTxFees; if (fPrintPriority) { LogPrintf("priority %.1f fee %s txid %s\n", dPriority, feeRate.ToString(), tx.GetHash().ToString()); } // Add transactions that depend on this one to the priority queue if (mapDependers.count(hash)) { BOOST_FOREACH(COrphan* porphan, mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) { vecPriority.push_back(TxPriority(porphan->dPriority, porphan->feeRate, porphan->ptx)); std::push_heap(vecPriority.begin(), vecPriority.end(), comparer); } } } } } nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; LogPrintf("CreateNewBlock(): total size %u\n", nBlockSize); // Compute final coinbase transaction. txNew.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus()); txNew.vin[0].scriptSig = CScript() << nHeight << OP_0; pblock->vtx[0] = txNew; pblocktemplate->vTxFees[0] = -nFees; // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(pblock, Params().GetConsensus(), pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, Params().GetConsensus()); pblock->nNonce = 0; pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(pblock->vtx[0]); CValidationState state; if (!TestBlockValidity(state, *pblock, pindexPrev, false, false)) throw std::runtime_error("CreateNewBlock(): TestBlockValidity failed"); } return pblocktemplate.release(); } void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 CMutableTransaction txCoinbase(pblock->vtx[0]); txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)) + COINBASE_FLAGS; assert(txCoinbase.vin[0].scriptSig.size() <= 100); pblock->vtx[0] = txCoinbase; pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } #ifdef ENABLE_WALLET ////////////////////////////////////////////////////////////////////////////// // // Internal miner // // // ScanHash scans nonces looking for a hash with at least some zero bits. // The nonce is usually preserved between calls, but periodically or if the // nonce is 0xffff0000 or above, the block is rebuilt and nNonce starts over at // zero. // bool static ScanHash(const CBlockHeader *pblock, uint32_t& nNonce, uint256 *phash) { // Write the first 76 bytes of the block header to a double-SHA256 state. CHash256 hasher; CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss << *pblock; assert(ss.size() == 80); hasher.Write((unsigned char*)&ss[0], 76); while (true) { nNonce++; // Write the last 4 bytes of the block header (the nonce) to a copy of // the double-SHA256 state, and compute the result. CHash256(hasher).Write((unsigned char*)&nNonce, 4).Finalize((unsigned char*)phash); // Return the nonce if the hash has at least some zero bits, // caller will check if it has enough to reach the target if (((uint16_t*)phash)[15] == 0) return true; // If nothing found after trying for a while, return -1 if ((nNonce & 0xfff) == 0) return false; } } CBlockTemplate* CreateNewBlockWithKey(CReserveKey& reservekey) { CPubKey pubkey; if (!reservekey.GetReservedKey(pubkey)) return NULL; CScript scriptPubKey = CScript() << ToByteVector(pubkey) << OP_CHECKSIG; return CreateNewBlock(scriptPubKey); } static bool ProcessBlockFound(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey) { LogPrintf("%s\n", pblock->ToString()); LogPrintf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue)); // Found a solution { LOCK(cs_main); if (pblock->hashPrevBlock != chainActive.Tip()->GetBlockHash()) return error("BitcoinMiner: generated block is stale"); } // Remove key from key pool reservekey.KeepKey(); // Track how many getdata requests this block gets { LOCK(wallet.cs_wallet); wallet.mapRequestCount[pblock->GetHash()] = 0; } // Process this block the same as if we had received it from another node CValidationState state; if (!ProcessNewBlock(state, NULL, pblock)) return error("BitcoinMiner: ProcessNewBlock, block not accepted"); return true; } void static BitcoinMiner(CWallet *pwallet) { LogPrintf("BitcoinMiner started\n"); SetThreadPriority(THREAD_PRIORITY_LOWEST); RenameThread("bitcoin-miner"); const CChainParams& chainparams = Params(); // Each thread has its own key and counter CReserveKey reservekey(pwallet); unsigned int nExtraNonce = 0; try { while (true) { if (chainparams.MiningRequiresPeers()) { // Busy-wait for the network to come online so we don't waste time mining // on an obsolete chain. In regtest mode we expect to fly solo. do { bool fvNodesEmpty; { LOCK(cs_vNodes); fvNodesEmpty = vNodes.empty(); } if (!fvNodesEmpty && !IsInitialBlockDownload()) break; MilliSleep(1000); } while (true); } // // Create new block // unsigned int nTransactionsUpdatedLast = mempool.GetTransactionsUpdated(); CBlockIndex* pindexPrev = chainActive.Tip(); auto_ptr pblocktemplate(CreateNewBlockWithKey(reservekey)); if (!pblocktemplate.get()) { LogPrintf("Error in BitcoinMiner: Keypool ran out, please call keypoolrefill before restarting the mining thread\n"); return; } CBlock *pblock = &pblocktemplate->block; IncrementExtraNonce(pblock, pindexPrev, nExtraNonce); LogPrintf("Running BitcoinMiner with %u transactions in block (%u bytes)\n", pblock->vtx.size(), ::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION)); // // Search // int64_t nStart = GetTime(); arith_uint256 hashTarget = arith_uint256().SetCompact(pblock->nBits); uint256 hash; uint32_t nNonce = 0; while (true) { // Check if something found if (ScanHash(pblock, nNonce, &hash)) { if (UintToArith256(hash) <= hashTarget) { // Found a solution pblock->nNonce = nNonce; assert(hash == pblock->GetHash()); SetThreadPriority(THREAD_PRIORITY_NORMAL); LogPrintf("BitcoinMiner:\n"); LogPrintf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex(), hashTarget.GetHex()); ProcessBlockFound(pblock, *pwallet, reservekey); SetThreadPriority(THREAD_PRIORITY_LOWEST); // In regression test mode, stop mining after a block is found. if (chainparams.MineBlocksOnDemand()) throw boost::thread_interrupted(); break; } } // Check for stop or if block needs to be rebuilt boost::this_thread::interruption_point(); // Regtest mode doesn't require peers if (vNodes.empty() && chainparams.MiningRequiresPeers()) break; if (nNonce >= 0xffff0000) break; if (mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast && GetTime() - nStart > 60) break; if (pindexPrev != chainActive.Tip()) break; // Update nTime every few seconds UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); if (chainparams.GetConsensus().fPowAllowMinDifficultyBlocks) { // Changing pblock->nTime can change work required on testnet: hashTarget.SetCompact(pblock->nBits); } } } } catch (const boost::thread_interrupted&) { LogPrintf("BitcoinMiner terminated\n"); throw; } catch (const std::runtime_error &e) { LogPrintf("BitcoinMiner runtime error: %s\n", e.what()); return; } } void GenerateBitcoins(bool fGenerate, CWallet* pwallet, int nThreads) { static boost::thread_group* minerThreads = NULL; if (nThreads < 0) { // In regtest threads defaults to 1 if (Params().DefaultMinerThreads()) nThreads = Params().DefaultMinerThreads(); else nThreads = boost::thread::hardware_concurrency(); } if (minerThreads != NULL) { minerThreads->interrupt_all(); delete minerThreads; minerThreads = NULL; } if (nThreads == 0 || !fGenerate) return; minerThreads = new boost::thread_group(); for (int i = 0; i < nThreads; i++) minerThreads->create_thread(boost::bind(&BitcoinMiner, pwallet)); } #endif // ENABLE_WALLET