// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_MAIN_H #define BITCOIN_MAIN_H #if defined(HAVE_CONFIG_H) #include "bitcoin-config.h" #endif #include "bignum.h" #include "chainparams.h" #include "coins.h" #include "core.h" #include "net.h" #include "script.h" #include "sync.h" #include "txmempool.h" #include "uint256.h" #include #include #include #include #include #include #include #include class CBlockIndex; class CBloomFilter; class CInv; /** The maximum allowed size for a serialized block, in bytes (network rule) */ static const unsigned int MAX_BLOCK_SIZE = 1000000; /** Default for -blockmaxsize and -blockminsize, which control the range of sizes the mining code will create **/ static const unsigned int DEFAULT_BLOCK_MAX_SIZE = 750000; static const unsigned int DEFAULT_BLOCK_MIN_SIZE = 0; /** Default for -blockprioritysize, maximum space for zero/low-fee transactions **/ static const unsigned int DEFAULT_BLOCK_PRIORITY_SIZE = 50000; /** The maximum size for transactions we're willing to relay/mine */ static const unsigned int MAX_STANDARD_TX_SIZE = 100000; /** The maximum allowed number of signature check operations in a block (network rule) */ static const unsigned int MAX_BLOCK_SIGOPS = MAX_BLOCK_SIZE/50; /** Default for -maxorphantx, maximum number of orphan transactions kept in memory */ static const unsigned int DEFAULT_MAX_ORPHAN_TRANSACTIONS = 100; /** Default for -maxorphanblocks, maximum number of orphan blocks kept in memory */ static const unsigned int DEFAULT_MAX_ORPHAN_BLOCKS = 750; /** The maximum size of a blk?????.dat file (since 0.8) */ static const unsigned int MAX_BLOCKFILE_SIZE = 0x8000000; // 128 MiB /** The pre-allocation chunk size for blk?????.dat files (since 0.8) */ static const unsigned int BLOCKFILE_CHUNK_SIZE = 0x1000000; // 16 MiB /** The pre-allocation chunk size for rev?????.dat files (since 0.8) */ static const unsigned int UNDOFILE_CHUNK_SIZE = 0x100000; // 1 MiB /** Coinbase transaction outputs can only be spent after this number of new blocks (network rule) */ static const int COINBASE_MATURITY = 100; /** Threshold for nLockTime: below this value it is interpreted as block number, otherwise as UNIX timestamp. */ static const unsigned int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC /** Maximum number of script-checking threads allowed */ static const int MAX_SCRIPTCHECK_THREADS = 16; /** -par default (number of script-checking threads, 0 = auto) */ static const int DEFAULT_SCRIPTCHECK_THREADS = 0; /** Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 128; /** Timeout in seconds before considering a block download peer unresponsive. */ static const unsigned int BLOCK_DOWNLOAD_TIMEOUT = 60; #ifdef USE_UPNP static const int fHaveUPnP = true; #else static const int fHaveUPnP = false; #endif /** "reject" message codes **/ static const unsigned char REJECT_MALFORMED = 0x01; static const unsigned char REJECT_INVALID = 0x10; static const unsigned char REJECT_OBSOLETE = 0x11; static const unsigned char REJECT_DUPLICATE = 0x12; static const unsigned char REJECT_NONSTANDARD = 0x40; static const unsigned char REJECT_DUST = 0x41; static const unsigned char REJECT_INSUFFICIENTFEE = 0x42; static const unsigned char REJECT_CHECKPOINT = 0x43; extern CScript COINBASE_FLAGS; extern CCriticalSection cs_main; extern CTxMemPool mempool; extern std::map mapBlockIndex; extern uint64_t nLastBlockTx; extern uint64_t nLastBlockSize; extern const std::string strMessageMagic; extern int64_t nTimeBestReceived; extern bool fImporting; extern bool fReindex; extern bool fBenchmark; extern int nScriptCheckThreads; extern bool fTxIndex; extern unsigned int nCoinCacheSize; // Minimum disk space required - used in CheckDiskSpace() static const uint64_t nMinDiskSpace = 52428800; class CCoinsDB; class CBlockTreeDB; struct CDiskBlockPos; class CTxUndo; class CScriptCheck; class CValidationState; class CWalletInterface; struct CNodeStateStats; struct CBlockTemplate; /** Register a wallet to receive updates from core */ void RegisterWallet(CWalletInterface* pwalletIn); /** Unregister a wallet from core */ void UnregisterWallet(CWalletInterface* pwalletIn); /** Unregister all wallets from core */ void UnregisterAllWallets(); /** Push an updated transaction to all registered wallets */ void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock = NULL); /** Register with a network node to receive its signals */ void RegisterNodeSignals(CNodeSignals& nodeSignals); /** Unregister a network node */ void UnregisterNodeSignals(CNodeSignals& nodeSignals); void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd); /** Process an incoming block */ bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp = NULL); /** Check whether enough disk space is available for an incoming block */ bool CheckDiskSpace(uint64_t nAdditionalBytes = 0); /** Open a block file (blk?????.dat) */ FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Open an undo file (rev?????.dat) */ FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Import blocks from an external file */ bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp = NULL); /** Initialize a new block tree database + block data on disk */ bool InitBlockIndex(); /** Load the block tree and coins database from disk */ bool LoadBlockIndex(); /** Unload database information */ void UnloadBlockIndex(); /** Verify consistency of the block and coin databases */ bool VerifyDB(int nCheckLevel, int nCheckDepth); /** Print the loaded block tree */ void PrintBlockTree(); /** Process protocol messages received from a given node */ bool ProcessMessages(CNode* pfrom); /** Send queued protocol messages to be sent to a give node */ bool SendMessages(CNode* pto, bool fSendTrickle); /** Run an instance of the script checking thread */ void ThreadScriptCheck(); /** Check whether a block hash satisfies the proof-of-work requirement specified by nBits */ bool CheckProofOfWork(uint256 hash, unsigned int nBits); /** Calculate the minimum amount of work a received block needs, without knowing its direct parent */ unsigned int ComputeMinWork(unsigned int nBase, int64_t nTime); /** Check whether we are doing an initial block download (synchronizing from disk or network) */ bool IsInitialBlockDownload(); /** Format a string that describes several potential problems detected by the core */ std::string GetWarnings(std::string strFor); /** Retrieve a transaction (from memory pool, or from disk, if possible) */ bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock, bool fAllowSlow = false); /** Find the best known block, and make it the tip of the block chain */ bool ActivateBestChain(CValidationState &state); int64_t GetBlockValue(int nHeight, int64_t nFees); unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock); void UpdateTime(CBlockHeader& block, const CBlockIndex* pindexPrev); /** Create a new block index entry for a given block hash */ CBlockIndex * InsertBlockIndex(uint256 hash); /** Verify a signature */ bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); /** Abort with a message */ bool AbortNode(const std::string &msg); /** Get statistics from node state */ bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats); /** Increase a node's misbehavior score. */ void Misbehaving(NodeId nodeid, int howmuch); /** (try to) add transaction to memory pool **/ bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree, bool* pfMissingInputs, bool fRejectInsaneFee=false); struct CNodeStateStats { int nMisbehavior; }; struct CDiskBlockPos { int nFile; unsigned int nPos; IMPLEMENT_SERIALIZE( READWRITE(VARINT(nFile)); READWRITE(VARINT(nPos)); ) CDiskBlockPos() { SetNull(); } CDiskBlockPos(int nFileIn, unsigned int nPosIn) { nFile = nFileIn; nPos = nPosIn; } friend bool operator==(const CDiskBlockPos &a, const CDiskBlockPos &b) { return (a.nFile == b.nFile && a.nPos == b.nPos); } friend bool operator!=(const CDiskBlockPos &a, const CDiskBlockPos &b) { return !(a == b); } void SetNull() { nFile = -1; nPos = 0; } bool IsNull() const { return (nFile == -1); } }; struct CDiskTxPos : public CDiskBlockPos { unsigned int nTxOffset; // after header IMPLEMENT_SERIALIZE( READWRITE(*(CDiskBlockPos*)this); READWRITE(VARINT(nTxOffset)); ) CDiskTxPos(const CDiskBlockPos &blockIn, unsigned int nTxOffsetIn) : CDiskBlockPos(blockIn.nFile, blockIn.nPos), nTxOffset(nTxOffsetIn) { } CDiskTxPos() { SetNull(); } void SetNull() { CDiskBlockPos::SetNull(); nTxOffset = 0; } }; enum GetMinFee_mode { GMF_RELAY, GMF_SEND, }; int64_t GetMinFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree, enum GetMinFee_mode mode); // // Check transaction inputs, and make sure any // pay-to-script-hash transactions are evaluating IsStandard scripts // // Why bother? To avoid denial-of-service attacks; an attacker // can submit a standard HASH... OP_EQUAL transaction, // which will get accepted into blocks. The redemption // script can be anything; an attacker could use a very // expensive-to-check-upon-redemption script like: // DUP CHECKSIG DROP ... repeated 100 times... OP_1 // /** Check for standard transaction types @param[in] mapInputs Map of previous transactions that have outputs we're spending @return True if all inputs (scriptSigs) use only standard transaction forms */ bool AreInputsStandard(const CTransaction& tx, CCoinsViewCache& mapInputs); /** Count ECDSA signature operations the old-fashioned (pre-0.6) way @return number of sigops this transaction's outputs will produce when spent @see CTransaction::FetchInputs */ unsigned int GetLegacySigOpCount(const CTransaction& tx); /** Count ECDSA signature operations in pay-to-script-hash inputs. @param[in] mapInputs Map of previous transactions that have outputs we're spending @return maximum number of sigops required to validate this transaction's inputs @see CTransaction::FetchInputs */ unsigned int GetP2SHSigOpCount(const CTransaction& tx, CCoinsViewCache& mapInputs); inline bool AllowFree(double dPriority) { // Large (in bytes) low-priority (new, small-coin) transactions // need a fee. return dPriority > COIN * 144 / 250; } // Check whether all inputs of this transaction are valid (no double spends, scripts & sigs, amounts) // This does not modify the UTXO set. If pvChecks is not NULL, script checks are pushed onto it // instead of being performed inline. bool CheckInputs(const CTransaction& tx, CValidationState &state, CCoinsViewCache &view, bool fScriptChecks = true, unsigned int flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC, std::vector *pvChecks = NULL); // Apply the effects of this transaction on the UTXO set represented by view void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash); // Context-independent validity checks bool CheckTransaction(const CTransaction& tx, CValidationState& state); /** Check for standard transaction types @return True if all outputs (scriptPubKeys) use only standard transaction forms */ bool IsStandardTx(const CTransaction& tx, std::string& reason); bool IsFinalTx(const CTransaction &tx, int nBlockHeight = 0, int64_t nBlockTime = 0); /** Undo information for a CBlock */ class CBlockUndo { public: std::vector vtxundo; // for all but the coinbase IMPLEMENT_SERIALIZE( READWRITE(vtxundo); ) bool WriteToDisk(CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to append CAutoFile fileout = CAutoFile(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("CBlockUndo::WriteToDisk : OpenUndoFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(*this); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write undo data long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("CBlockUndo::WriteToDisk : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << *this; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; fileout << hasher.GetHash(); // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadFromDisk(const CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to read CAutoFile filein = CAutoFile(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("CBlockUndo::ReadFromDisk : OpenBlockFile failed"); // Read block uint256 hashChecksum; try { filein >> *this; filein >> hashChecksum; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; if (hashChecksum != hasher.GetHash()) return error("CBlockUndo::ReadFromDisk : Checksum mismatch"); return true; } }; /** Closure representing one script verification * Note that this stores references to the spending transaction */ class CScriptCheck { private: CScript scriptPubKey; const CTransaction *ptxTo; unsigned int nIn; unsigned int nFlags; int nHashType; public: CScriptCheck() {} CScriptCheck(const CCoins& txFromIn, const CTransaction& txToIn, unsigned int nInIn, unsigned int nFlagsIn, int nHashTypeIn) : scriptPubKey(txFromIn.vout[txToIn.vin[nInIn].prevout.n].scriptPubKey), ptxTo(&txToIn), nIn(nInIn), nFlags(nFlagsIn), nHashType(nHashTypeIn) { } bool operator()() const; void swap(CScriptCheck &check) { scriptPubKey.swap(check.scriptPubKey); std::swap(ptxTo, check.ptxTo); std::swap(nIn, check.nIn); std::swap(nFlags, check.nFlags); std::swap(nHashType, check.nHashType); } }; /** A transaction with a merkle branch linking it to the block chain. */ class CMerkleTx : public CTransaction { private: int GetDepthInMainChainINTERNAL(CBlockIndex* &pindexRet) const; public: uint256 hashBlock; std::vector vMerkleBranch; int nIndex; // memory only mutable bool fMerkleVerified; CMerkleTx() { Init(); } CMerkleTx(const CTransaction& txIn) : CTransaction(txIn) { Init(); } void Init() { hashBlock = 0; nIndex = -1; fMerkleVerified = false; } IMPLEMENT_SERIALIZE ( nSerSize += SerReadWrite(s, *(CTransaction*)this, nType, nVersion, ser_action); nVersion = this->nVersion; READWRITE(hashBlock); READWRITE(vMerkleBranch); READWRITE(nIndex); ) int SetMerkleBranch(const CBlock* pblock=NULL); // Return depth of transaction in blockchain: // -1 : not in blockchain, and not in memory pool (conflicted transaction) // 0 : in memory pool, waiting to be included in a block // >=1 : this many blocks deep in the main chain int GetDepthInMainChain(CBlockIndex* &pindexRet) const; int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); } bool IsInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChainINTERNAL(pindexRet) > 0; } int GetBlocksToMaturity() const; bool AcceptToMemoryPool(bool fLimitFree=true); }; /** Data structure that represents a partial merkle tree. * * It respresents a subset of the txid's of a known block, in a way that * allows recovery of the list of txid's and the merkle root, in an * authenticated way. * * The encoding works as follows: we traverse the tree in depth-first order, * storing a bit for each traversed node, signifying whether the node is the * parent of at least one matched leaf txid (or a matched txid itself). In * case we are at the leaf level, or this bit is 0, its merkle node hash is * stored, and its children are not explorer further. Otherwise, no hash is * stored, but we recurse into both (or the only) child branch. During * decoding, the same depth-first traversal is performed, consuming bits and * hashes as they written during encoding. * * The serialization is fixed and provides a hard guarantee about the * encoded size: * * SIZE <= 10 + ceil(32.25*N) * * Where N represents the number of leaf nodes of the partial tree. N itself * is bounded by: * * N <= total_transactions * N <= 1 + matched_transactions*tree_height * * The serialization format: * - uint32 total_transactions (4 bytes) * - varint number of hashes (1-3 bytes) * - uint256[] hashes in depth-first order (<= 32*N bytes) * - varint number of bytes of flag bits (1-3 bytes) * - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits) * The size constraints follow from this. */ class CPartialMerkleTree { protected: // the total number of transactions in the block unsigned int nTransactions; // node-is-parent-of-matched-txid bits std::vector vBits; // txids and internal hashes std::vector vHash; // flag set when encountering invalid data bool fBad; // helper function to efficiently calculate the number of nodes at given height in the merkle tree unsigned int CalcTreeWidth(int height) { return (nTransactions+(1 << height)-1) >> height; } // calculate the hash of a node in the merkle tree (at leaf level: the txid's themself) uint256 CalcHash(int height, unsigned int pos, const std::vector &vTxid); // recursive function that traverses tree nodes, storing the data as bits and hashes void TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch); // recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBuild. // it returns the hash of the respective node. uint256 TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch); public: // serialization implementation IMPLEMENT_SERIALIZE( READWRITE(nTransactions); READWRITE(vHash); std::vector vBytes; if (fRead) { READWRITE(vBytes); CPartialMerkleTree &us = *(const_cast(this)); us.vBits.resize(vBytes.size() * 8); for (unsigned int p = 0; p < us.vBits.size(); p++) us.vBits[p] = (vBytes[p / 8] & (1 << (p % 8))) != 0; us.fBad = false; } else { vBytes.resize((vBits.size()+7)/8); for (unsigned int p = 0; p < vBits.size(); p++) vBytes[p / 8] |= vBits[p] << (p % 8); READWRITE(vBytes); } ) // Construct a partial merkle tree from a list of transaction id's, and a mask that selects a subset of them CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch); CPartialMerkleTree(); // extract the matching txid's represented by this partial merkle tree. // returns the merkle root, or 0 in case of failure uint256 ExtractMatches(std::vector &vMatch); }; /** Functions for disk access for blocks */ bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos); bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos); bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex); /** Functions for validating blocks and updating the block tree */ /** Undo the effects of this block (with given index) on the UTXO set represented by coins. * In case pfClean is provided, operation will try to be tolerant about errors, and *pfClean * will be true if no problems were found. Otherwise, the return value will be false in case * of problems. Note that in any case, coins may be modified. */ bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& coins, bool* pfClean = NULL); // Apply the effects of this block (with given index) on the UTXO set represented by coins bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& coins, bool fJustCheck = false); // Add this block to the block index, and if necessary, switch the active block chain to this bool AddToBlockIndex(CBlock& block, CValidationState& state, const CDiskBlockPos& pos); // Context-independent validity checks bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW = true, bool fCheckMerkleRoot = true); // Store block on disk // if dbp is provided, the file is known to already reside on disk bool AcceptBlock(CBlock& block, CValidationState& state, CDiskBlockPos* dbp = NULL); class CBlockFileInfo { public: unsigned int nBlocks; // number of blocks stored in file unsigned int nSize; // number of used bytes of block file unsigned int nUndoSize; // number of used bytes in the undo file unsigned int nHeightFirst; // lowest height of block in file unsigned int nHeightLast; // highest height of block in file uint64_t nTimeFirst; // earliest time of block in file uint64_t nTimeLast; // latest time of block in file IMPLEMENT_SERIALIZE( READWRITE(VARINT(nBlocks)); READWRITE(VARINT(nSize)); READWRITE(VARINT(nUndoSize)); READWRITE(VARINT(nHeightFirst)); READWRITE(VARINT(nHeightLast)); READWRITE(VARINT(nTimeFirst)); READWRITE(VARINT(nTimeLast)); ) void SetNull() { nBlocks = 0; nSize = 0; nUndoSize = 0; nHeightFirst = 0; nHeightLast = 0; nTimeFirst = 0; nTimeLast = 0; } CBlockFileInfo() { SetNull(); } std::string ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst).c_str(), DateTimeStrFormat("%Y-%m-%d", nTimeLast).c_str()); } // update statistics (does not update nSize) void AddBlock(unsigned int nHeightIn, uint64_t nTimeIn) { if (nBlocks==0 || nHeightFirst > nHeightIn) nHeightFirst = nHeightIn; if (nBlocks==0 || nTimeFirst > nTimeIn) nTimeFirst = nTimeIn; nBlocks++; if (nHeightIn > nHeightLast) nHeightLast = nHeightIn; if (nTimeIn > nTimeLast) nTimeLast = nTimeIn; } }; enum BlockStatus { BLOCK_VALID_UNKNOWN = 0, BLOCK_VALID_HEADER = 1, // parsed, version ok, hash satisfies claimed PoW, 1 <= vtx count <= max, timestamp not in future BLOCK_VALID_TREE = 2, // parent found, difficulty matches, timestamp >= median previous, checkpoint BLOCK_VALID_TRANSACTIONS = 3, // only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid, no duplicate txids, sigops, size, merkle root BLOCK_VALID_CHAIN = 4, // outputs do not overspend inputs, no double spends, coinbase output ok, immature coinbase spends, BIP30 BLOCK_VALID_SCRIPTS = 5, // scripts/signatures ok BLOCK_VALID_MASK = 7, BLOCK_HAVE_DATA = 8, // full block available in blk*.dat BLOCK_HAVE_UNDO = 16, // undo data available in rev*.dat BLOCK_HAVE_MASK = 24, BLOCK_FAILED_VALID = 32, // stage after last reached validness failed BLOCK_FAILED_CHILD = 64, // descends from failed block BLOCK_FAILED_MASK = 96 }; /** The block chain is a tree shaped structure starting with the * genesis block at the root, with each block potentially having multiple * candidates to be the next block. A blockindex may have multiple pprev pointing * to it, but at most one of them can be part of the currently active branch. */ class CBlockIndex { public: // pointer to the hash of the block, if any. memory is owned by this CBlockIndex const uint256* phashBlock; // pointer to the index of the predecessor of this block CBlockIndex* pprev; // height of the entry in the chain. The genesis block has height 0 int nHeight; // Which # file this block is stored in (blk?????.dat) int nFile; // Byte offset within blk?????.dat where this block's data is stored unsigned int nDataPos; // Byte offset within rev?????.dat where this block's undo data is stored unsigned int nUndoPos; // (memory only) Total amount of work (expected number of hashes) in the chain up to and including this block uint256 nChainWork; // Number of transactions in this block. // Note: in a potential headers-first mode, this number cannot be relied upon unsigned int nTx; // (memory only) Number of transactions in the chain up to and including this block unsigned int nChainTx; // change to 64-bit type when necessary; won't happen before 2030 // Verification status of this block. See enum BlockStatus unsigned int nStatus; // block header int nVersion; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; // (memory only) Sequencial id assigned to distinguish order in which blocks are received. uint32_t nSequenceId; CBlockIndex() { phashBlock = NULL; pprev = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nSequenceId = 0; nVersion = 0; hashMerkleRoot = 0; nTime = 0; nBits = 0; nNonce = 0; } CBlockIndex(CBlockHeader& block) { phashBlock = NULL; pprev = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nSequenceId = 0; nVersion = block.nVersion; hashMerkleRoot = block.hashMerkleRoot; nTime = block.nTime; nBits = block.nBits; nNonce = block.nNonce; } CDiskBlockPos GetBlockPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_DATA) { ret.nFile = nFile; ret.nPos = nDataPos; } return ret; } CDiskBlockPos GetUndoPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_UNDO) { ret.nFile = nFile; ret.nPos = nUndoPos; } return ret; } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; if (pprev) block.hashPrevBlock = pprev->GetBlockHash(); block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 GetBlockHash() const { return *phashBlock; } int64_t GetBlockTime() const { return (int64_t)nTime; } CBigNum GetBlockWork() const { CBigNum bnTarget; bnTarget.SetCompact(nBits); if (bnTarget <= 0) return 0; return (CBigNum(1)<<256) / (bnTarget+1); } bool CheckIndex() const { return CheckProofOfWork(GetBlockHash(), nBits); } enum { nMedianTimeSpan=11 }; int64_t GetMedianTimePast() const { int64_t pmedian[nMedianTimeSpan]; int64_t* pbegin = &pmedian[nMedianTimeSpan]; int64_t* pend = &pmedian[nMedianTimeSpan]; const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev) *(--pbegin) = pindex->GetBlockTime(); std::sort(pbegin, pend); return pbegin[(pend - pbegin)/2]; } int64_t GetMedianTime() const; /** * Returns true if there are nRequired or more blocks of minVersion or above * in the last nToCheck blocks, starting at pstart and going backwards. */ static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck); std::string ToString() const { return strprintf("CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, nHeight, hashMerkleRoot.ToString().c_str(), GetBlockHash().ToString().c_str()); } void print() const { LogPrintf("%s\n", ToString().c_str()); } }; /** Used to marshal pointers into hashes for db storage. */ class CDiskBlockIndex : public CBlockIndex { public: uint256 hashPrev; CDiskBlockIndex() { hashPrev = 0; } explicit CDiskBlockIndex(CBlockIndex* pindex) : CBlockIndex(*pindex) { hashPrev = (pprev ? pprev->GetBlockHash() : 0); } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(VARINT(nVersion)); READWRITE(VARINT(nHeight)); READWRITE(VARINT(nStatus)); READWRITE(VARINT(nTx)); if (nStatus & (BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO)) READWRITE(VARINT(nFile)); if (nStatus & BLOCK_HAVE_DATA) READWRITE(VARINT(nDataPos)); if (nStatus & BLOCK_HAVE_UNDO) READWRITE(VARINT(nUndoPos)); // block header READWRITE(this->nVersion); READWRITE(hashPrev); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); ) uint256 GetBlockHash() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrev; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block.GetHash(); } std::string ToString() const { std::string str = "CDiskBlockIndex("; str += CBlockIndex::ToString(); str += strprintf("\n hashBlock=%s, hashPrev=%s)", GetBlockHash().ToString().c_str(), hashPrev.ToString().c_str()); return str; } void print() const { LogPrintf("%s\n", ToString().c_str()); } }; /** Capture information about block/transaction validation */ class CValidationState { private: enum mode_state { MODE_VALID, // everything ok MODE_INVALID, // network rule violation (DoS value may be set) MODE_ERROR, // run-time error } mode; int nDoS; std::string strRejectReason; unsigned char chRejectCode; bool corruptionPossible; public: CValidationState() : mode(MODE_VALID), nDoS(0), corruptionPossible(false) {} bool DoS(int level, bool ret = false, unsigned char chRejectCodeIn=0, std::string strRejectReasonIn="", bool corruptionIn=false) { chRejectCode = chRejectCodeIn; strRejectReason = strRejectReasonIn; corruptionPossible = corruptionIn; if (mode == MODE_ERROR) return ret; nDoS += level; mode = MODE_INVALID; return ret; } bool Invalid(bool ret = false, unsigned char _chRejectCode=0, std::string _strRejectReason="") { return DoS(0, ret, _chRejectCode, _strRejectReason); } bool Error(std::string strRejectReasonIn="") { if (mode == MODE_VALID) strRejectReason = strRejectReasonIn; mode = MODE_ERROR; return false; } bool Abort(const std::string &msg) { AbortNode(msg); return Error(msg); } bool IsValid() const { return mode == MODE_VALID; } bool IsInvalid() const { return mode == MODE_INVALID; } bool IsError() const { return mode == MODE_ERROR; } bool IsInvalid(int &nDoSOut) const { if (IsInvalid()) { nDoSOut = nDoS; return true; } return false; } bool CorruptionPossible() const { return corruptionPossible; } unsigned char GetRejectCode() const { return chRejectCode; } std::string GetRejectReason() const { return strRejectReason; } }; /** An in-memory indexed chain of blocks. */ class CChain { private: std::vector vChain; public: /** Returns the index entry for the genesis block of this chain, or NULL if none. */ CBlockIndex *Genesis() const { return vChain.size() > 0 ? vChain[0] : NULL; } /** Returns the index entry for the tip of this chain, or NULL if none. */ CBlockIndex *Tip() const { return vChain.size() > 0 ? vChain[vChain.size() - 1] : NULL; } /** Returns the index entry at a particular height in this chain, or NULL if no such height exists. */ CBlockIndex *operator[](int nHeight) const { if (nHeight < 0 || nHeight >= (int)vChain.size()) return NULL; return vChain[nHeight]; } /** Compare two chains efficiently. */ friend bool operator==(const CChain &a, const CChain &b) { return a.vChain.size() == b.vChain.size() && a.vChain[a.vChain.size() - 1] == b.vChain[b.vChain.size() - 1]; } /** Efficiently check whether a block is present in this chain. */ bool Contains(const CBlockIndex *pindex) const { return (*this)[pindex->nHeight] == pindex; } /** Find the successor of a block in this chain, or NULL if the given index is not found or is the tip. */ CBlockIndex *Next(const CBlockIndex *pindex) const { if (Contains(pindex)) return (*this)[pindex->nHeight + 1]; else return NULL; } /** Return the maximal height in the chain. Is equal to chain.Tip() ? chain.Tip()->nHeight : -1. */ int Height() const { return vChain.size() - 1; } /** Set/initialize a chain with a given tip. Returns the forking point. */ CBlockIndex *SetTip(CBlockIndex *pindex); /** Return a CBlockLocator that refers to a block in this chain (by default the tip). */ CBlockLocator GetLocator(const CBlockIndex *pindex = NULL) const; /** Find the last common block between this chain and a locator. */ CBlockIndex *FindFork(const CBlockLocator &locator) const; }; /** The currently-connected chain of blocks. */ extern CChain chainActive; /** The currently best known chain of headers (some of which may be invalid). */ extern CChain chainMostWork; /** Global variable that points to the active CCoinsView (protected by cs_main) */ extern CCoinsViewCache *pcoinsTip; /** Global variable that points to the active block tree (protected by cs_main) */ extern CBlockTreeDB *pblocktree; struct CBlockTemplate { CBlock block; std::vector vTxFees; std::vector vTxSigOps; }; /** Used to relay blocks as header + vector * to filtered nodes. */ class CMerkleBlock { public: // Public only for unit testing CBlockHeader header; CPartialMerkleTree txn; public: // Public only for unit testing and relay testing // (not relayed) std::vector > vMatchedTxn; // Create from a CBlock, filtering transactions according to filter // Note that this will call IsRelevantAndUpdate on the filter for each transaction, // thus the filter will likely be modified. CMerkleBlock(const CBlock& block, CBloomFilter& filter); IMPLEMENT_SERIALIZE ( READWRITE(header); READWRITE(txn); ) }; class CWalletInterface { protected: virtual void SyncTransaction(const uint256 &hash, const CTransaction &tx, const CBlock *pblock) =0; virtual void EraseFromWallet(const uint256 &hash) =0; virtual void SetBestChain(const CBlockLocator &locator) =0; virtual void UpdatedTransaction(const uint256 &hash) =0; virtual void Inventory(const uint256 &hash) =0; virtual void ResendWalletTransactions() =0; friend void ::RegisterWallet(CWalletInterface*); friend void ::UnregisterWallet(CWalletInterface*); friend void ::UnregisterAllWallets(); }; #endif