// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #include "headers.h" #include "checkpoints.h" #include "db.h" #include "net.h" #include "init.h" #include #include #include using namespace std; using namespace boost; // // Global state // // Name of client reported in the 'version' message. Report the same name // for both bitcoind and bitcoin-qt, to make it harder for attackers to // target servers or GUI users specifically. const std::string CLIENT_NAME("Satoshi"); CCriticalSection cs_setpwalletRegistered; set setpwalletRegistered; CCriticalSection cs_main; static map mapTransactions; CCriticalSection cs_mapTransactions; unsigned int nTransactionsUpdated = 0; map mapNextTx; map mapBlockIndex; uint256 hashGenesisBlock("0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"); static CBigNum bnProofOfWorkLimit(~uint256(0) >> 32); CBlockIndex* pindexGenesisBlock = NULL; int nBestHeight = -1; CBigNum bnBestChainWork = 0; CBigNum bnBestInvalidWork = 0; uint256 hashBestChain = 0; CBlockIndex* pindexBest = NULL; int64 nTimeBestReceived = 0; CMedianFilter cPeerBlockCounts(5, 0); // Amount of blocks that other nodes claim to have map mapOrphanBlocks; multimap mapOrphanBlocksByPrev; map mapOrphanTransactions; multimap mapOrphanTransactionsByPrev; // Constant stuff for coinbase transactions we create: CScript COINBASE_FLAGS; const string strMessageMagic = "Bitcoin Signed Message:\n"; double dHashesPerSec; int64 nHPSTimerStart; // Settings int fGenerateBitcoins = false; int64 nTransactionFee = 0; int fLimitProcessors = false; int nLimitProcessors = 1; int fMinimizeToTray = true; int fMinimizeOnClose = true; #if USE_UPNP int fUseUPnP = true; #else int fUseUPnP = false; #endif ////////////////////////////////////////////////////////////////////////////// // // dispatching functions // // These functions dispatch to one or all registered wallets void RegisterWallet(CWallet* pwalletIn) { CRITICAL_BLOCK(cs_setpwalletRegistered) { setpwalletRegistered.insert(pwalletIn); } } void UnregisterWallet(CWallet* pwalletIn) { CRITICAL_BLOCK(cs_setpwalletRegistered) { setpwalletRegistered.erase(pwalletIn); } } // check whether the passed transaction is from us bool static IsFromMe(CTransaction& tx) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) if (pwallet->IsFromMe(tx)) return true; return false; } // get the wallet transaction with the given hash (if it exists) bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) if (pwallet->GetTransaction(hashTx,wtx)) return true; return false; } // erases transaction with the given hash from all wallets void static EraseFromWallets(uint256 hash) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->EraseFromWallet(hash); } // make sure all wallets know about the given transaction, in the given block void static SyncWithWallets(const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->AddToWalletIfInvolvingMe(tx, pblock, fUpdate); } // notify wallets about a new best chain void static SetBestChain(const CBlockLocator& loc) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->SetBestChain(loc); } // notify wallets about an updated transaction void static UpdatedTransaction(const uint256& hashTx) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->UpdatedTransaction(hashTx); } // dump all wallets void static PrintWallets(const CBlock& block) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->PrintWallet(block); } // notify wallets about an incoming inventory (for request counts) void static Inventory(const uint256& hash) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->Inventory(hash); } // ask wallets to resend their transactions void static ResendWalletTransactions() { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->ResendWalletTransactions(); } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // void static AddOrphanTx(const CDataStream& vMsg) { CTransaction tx; CDataStream(vMsg) >> tx; uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return; CDataStream* pvMsg = mapOrphanTransactions[hash] = new CDataStream(vMsg); BOOST_FOREACH(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev.insert(make_pair(txin.prevout.hash, pvMsg)); } void static EraseOrphanTx(uint256 hash) { if (!mapOrphanTransactions.count(hash)) return; const CDataStream* pvMsg = mapOrphanTransactions[hash]; CTransaction tx; CDataStream(*pvMsg) >> tx; BOOST_FOREACH(const CTxIn& txin, tx.vin) { for (multimap::iterator mi = mapOrphanTransactionsByPrev.lower_bound(txin.prevout.hash); mi != mapOrphanTransactionsByPrev.upper_bound(txin.prevout.hash);) { if ((*mi).second == pvMsg) mapOrphanTransactionsByPrev.erase(mi++); else mi++; } } delete pvMsg; mapOrphanTransactions.erase(hash); } ////////////////////////////////////////////////////////////////////////////// // // CTransaction and CTxIndex // bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet) { SetNull(); if (!txdb.ReadTxIndex(prevout.hash, txindexRet)) return false; if (!ReadFromDisk(txindexRet.pos)) return false; if (prevout.n >= vout.size()) { SetNull(); return false; } return true; } bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout) { CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTransaction::ReadFromDisk(COutPoint prevout) { CTxDB txdb("r"); CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTransaction::IsStandard() const { BOOST_FOREACH(const CTxIn& txin, vin) { // Biggest 'standard' txin is a 3-signature 3-of-3 CHECKMULTISIG // pay-to-script-hash, which is 3 ~80-byte signatures, 3 // ~65-byte public keys, plus a few script ops. if (txin.scriptSig.size() > 500) return false; if (!txin.scriptSig.IsPushOnly()) return false; } BOOST_FOREACH(const CTxOut& txout, vout) if (!::IsStandard(txout.scriptPubKey)) return false; return true; } // // Check transaction inputs, and make sure any // pay-to-script-hash transactions are evaluating IsStandard scripts // // Why bother? To avoid denial-of-service attacks; an attacker // can submit a standard HASH... OP_EQUAL transaction, // which will get accepted into blocks. The redemption // script can be anything; an attacker could use a very // expensive-to-check-upon-redemption script like: // DUP CHECKSIG DROP ... repeated 100 times... OP_1 // bool CTransaction::AreInputsStandard(const MapPrevTx& mapInputs) const { if (IsCoinBase()) return true; // Coinbases don't use vin normally for (int i = 0; i < vin.size(); i++) { const CTxOut& prev = GetOutputFor(vin[i], mapInputs); vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions); // Transactions with extra stuff in their scriptSigs are // non-standard. Note that this EvalScript() call will // be quick, because if there are any operations // beside "push data" in the scriptSig the // IsStandard() call returns false vector > stack; if (!EvalScript(stack, vin[i].scriptSig, *this, i, 0)) return false; if (whichType == TX_SCRIPTHASH) { if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); vector > vSolutions2; txnouttype whichType2; if (!Solver(subscript, whichType2, vSolutions2)) return false; if (whichType2 == TX_SCRIPTHASH) return false; nArgsExpected += ScriptSigArgsExpected(whichType2, vSolutions2); } if (stack.size() != nArgsExpected) return false; } return true; } int CTransaction::GetLegacySigOpCount() const { int nSigOps = 0; BOOST_FOREACH(const CTxIn& txin, vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } BOOST_FOREACH(const CTxOut& txout, vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } int CMerkleTx::SetMerkleBranch(const CBlock* pblock) { if (fClient) { if (hashBlock == 0) return 0; } else { CBlock blockTmp; if (pblock == NULL) { // Load the block this tx is in CTxIndex txindex; if (!CTxDB("r").ReadTxIndex(GetHash(), txindex)) return 0; if (!blockTmp.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos)) return 0; pblock = &blockTmp; } // Update the tx's hashBlock hashBlock = pblock->GetHash(); // Locate the transaction for (nIndex = 0; nIndex < pblock->vtx.size(); nIndex++) if (pblock->vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == pblock->vtx.size()) { vMerkleBranch.clear(); nIndex = -1; printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = pblock->GetMerkleBranch(nIndex); } // Is the tx in a block that's in the main chain map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return pindexBest->nHeight - pindex->nHeight + 1; } bool CTransaction::CheckTransaction() const { // Basic checks that don't depend on any context if (vin.empty()) return DoS(10, error("CTransaction::CheckTransaction() : vin empty")); if (vout.empty()) return DoS(10, error("CTransaction::CheckTransaction() : vout empty")); // Size limits if (::GetSerializeSize(*this, SER_NETWORK) > MAX_BLOCK_SIZE) return DoS(100, error("CTransaction::CheckTransaction() : size limits failed")); // Check for negative or overflow output values int64 nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, vout) { if (txout.nValue < 0) return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue negative")); if (txout.nValue > MAX_MONEY) return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high")); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range")); } // Check for duplicate inputs set vInOutPoints; BOOST_FOREACH(const CTxIn& txin, vin) { if (vInOutPoints.count(txin.prevout)) return false; vInOutPoints.insert(txin.prevout); } if (IsCoinBase()) { if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100) return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size")); } else { BOOST_FOREACH(const CTxIn& txin, vin) if (txin.prevout.IsNull()) return DoS(10, error("CTransaction::CheckTransaction() : prevout is null")); } return true; } bool CTransaction::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs, bool* pfMissingInputs) { if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction()) return error("AcceptToMemoryPool() : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (IsCoinBase()) return DoS(100, error("AcceptToMemoryPool() : coinbase as individual tx")); // To help v0.1.5 clients who would see it as a negative number if ((int64)nLockTime > std::numeric_limits::max()) return error("AcceptToMemoryPool() : not accepting nLockTime beyond 2038 yet"); // Rather not work on nonstandard transactions (unless -testnet) if (!fTestNet && !IsStandard()) return error("AcceptToMemoryPool() : nonstandard transaction type"); // Do we already have it? uint256 hash = GetHash(); CRITICAL_BLOCK(cs_mapTransactions) if (mapTransactions.count(hash)) return false; if (fCheckInputs) if (txdb.ContainsTx(hash)) return false; // Check for conflicts with in-memory transactions CTransaction* ptxOld = NULL; for (int i = 0; i < vin.size(); i++) { COutPoint outpoint = vin[i].prevout; if (mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; // Allow replacing with a newer version of the same transaction if (i != 0) return false; ptxOld = mapNextTx[outpoint].ptx; if (ptxOld->IsFinal()) return false; if (!IsNewerThan(*ptxOld)) return false; for (int i = 0; i < vin.size(); i++) { COutPoint outpoint = vin[i].prevout; if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld) return false; } break; } } if (fCheckInputs) { MapPrevTx mapInputs; map mapUnused; bool fInvalid = false; if (!FetchInputs(txdb, mapUnused, false, false, mapInputs, fInvalid)) { if (fInvalid) return error("AcceptToMemoryPool() : FetchInputs found invalid tx %s", hash.ToString().substr(0,10).c_str()); if (pfMissingInputs) *pfMissingInputs = true; return error("AcceptToMemoryPool() : FetchInputs failed %s", hash.ToString().substr(0,10).c_str()); } // Check for non-standard pay-to-script-hash in inputs if (!AreInputsStandard(mapInputs) && !fTestNet) return error("AcceptToMemoryPool() : nonstandard transaction input"); // Note: if you modify this code to accept non-standard transactions, then // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. int64 nFees = GetValueIn(mapInputs)-GetValueOut(); unsigned int nSize = ::GetSerializeSize(*this, SER_NETWORK); // Don't accept it if it can't get into a block if (nFees < GetMinFee(1000, true, GMF_RELAY)) return error("AcceptToMemoryPool() : not enough fees"); // Continuously rate-limit free transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make other's transactions take longer to confirm. if (nFees < MIN_RELAY_TX_FEE) { static CCriticalSection cs; static double dFreeCount; static int64 nLastTime; int64 nNow = GetTime(); CRITICAL_BLOCK(cs) { // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000 && !IsFromMe(*this)) return error("AcceptToMemoryPool() : free transaction rejected by rate limiter"); if (fDebug) printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } } // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!ConnectInputs(mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false)) { return error("AcceptToMemoryPool() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str()); } } // Store transaction in memory CRITICAL_BLOCK(cs_mapTransactions) { if (ptxOld) { printf("AcceptToMemoryPool() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str()); ptxOld->RemoveFromMemoryPool(); } AddToMemoryPoolUnchecked(); } ///// are we sure this is ok when loading transactions or restoring block txes // If updated, erase old tx from wallet if (ptxOld) EraseFromWallets(ptxOld->GetHash()); printf("AcceptToMemoryPool(): accepted %s\n", hash.ToString().substr(0,10).c_str()); return true; } bool CTransaction::AcceptToMemoryPool(bool fCheckInputs, bool* pfMissingInputs) { CTxDB txdb("r"); return AcceptToMemoryPool(txdb, fCheckInputs, pfMissingInputs); } uint64 nPooledTx = 0; bool CTransaction::AddToMemoryPoolUnchecked() { printf("AcceptToMemoryPoolUnchecked(): size %lu\n", mapTransactions.size()); // Add to memory pool without checking anything. Don't call this directly, // call AcceptToMemoryPool to properly check the transaction first. CRITICAL_BLOCK(cs_mapTransactions) { uint256 hash = GetHash(); mapTransactions[hash] = *this; for (int i = 0; i < vin.size(); i++) mapNextTx[vin[i].prevout] = CInPoint(&mapTransactions[hash], i); nTransactionsUpdated++; ++nPooledTx; } return true; } bool CTransaction::RemoveFromMemoryPool() { // Remove transaction from memory pool CRITICAL_BLOCK(cs_mapTransactions) { uint256 hash = GetHash(); if (mapTransactions.count(hash)) { BOOST_FOREACH(const CTxIn& txin, vin) mapNextTx.erase(txin.prevout); mapTransactions.erase(hash); nTransactionsUpdated++; --nPooledTx; } } return true; } int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const { if (hashBlock == 0 || nIndex == -1) return 0; // Find the block it claims to be in map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } pindexRet = pindex; return pindexBest->nHeight - pindex->nHeight + 1; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs) { if (fClient) { if (!IsInMainChain() && !ClientConnectInputs()) return false; return CTransaction::AcceptToMemoryPool(txdb, false); } else { return CTransaction::AcceptToMemoryPool(txdb, fCheckInputs); } } bool CMerkleTx::AcceptToMemoryPool() { CTxDB txdb("r"); return AcceptToMemoryPool(txdb); } bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb, bool fCheckInputs) { CRITICAL_BLOCK(cs_mapTransactions) { // Add previous supporting transactions first BOOST_FOREACH(CMerkleTx& tx, vtxPrev) { if (!tx.IsCoinBase()) { uint256 hash = tx.GetHash(); if (!mapTransactions.count(hash) && !txdb.ContainsTx(hash)) tx.AcceptToMemoryPool(txdb, fCheckInputs); } } return AcceptToMemoryPool(txdb, fCheckInputs); } return false; } bool CWalletTx::AcceptWalletTransaction() { CTxDB txdb("r"); return AcceptWalletTransaction(txdb); } int CTxIndex::GetDepthInMainChain() const { // Read block header CBlock block; if (!block.ReadFromDisk(pos.nFile, pos.nBlockPos, false)) return 0; // Find the block in the index map::iterator mi = mapBlockIndex.find(block.GetHash()); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return 1 + nBestHeight - pindex->nHeight; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions) { if (!fReadTransactions) { *this = pindex->GetBlockHeader(); return true; } if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions)) return false; if (GetHash() != pindex->GetBlockHash()) return error("CBlock::ReadFromDisk() : GetHash() doesn't match index"); return true; } uint256 static GetOrphanRoot(const CBlock* pblock) { // Work back to the first block in the orphan chain while (mapOrphanBlocks.count(pblock->hashPrevBlock)) pblock = mapOrphanBlocks[pblock->hashPrevBlock]; return pblock->GetHash(); } int64 static GetBlockValue(int nHeight, int64 nFees) { int64 nSubsidy = 50 * COIN; // Subsidy is cut in half every 4 years nSubsidy >>= (nHeight / 210000); return nSubsidy + nFees; } static const int64 nTargetTimespan = 14 * 24 * 60 * 60; // two weeks static const int64 nTargetSpacing = 10 * 60; static const int64 nInterval = nTargetTimespan / nTargetSpacing; // // minimum amount of work that could possibly be required nTime after // minimum work required was nBase // unsigned int ComputeMinWork(unsigned int nBase, int64 nTime) { // Testnet has min-difficulty blocks // after nTargetSpacing*2 time between blocks: if (fTestNet && nTime > nTargetSpacing*2) return bnProofOfWorkLimit.GetCompact(); CBigNum bnResult; bnResult.SetCompact(nBase); while (nTime > 0 && bnResult < bnProofOfWorkLimit) { // Maximum 400% adjustment... bnResult *= 4; // ... in best-case exactly 4-times-normal target time nTime -= nTargetTimespan*4; } if (bnResult > bnProofOfWorkLimit) bnResult = bnProofOfWorkLimit; return bnResult.GetCompact(); } unsigned int static GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlock *pblock) { unsigned int nProofOfWorkLimit = bnProofOfWorkLimit.GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % nInterval != 0) { // Special rules for testnet after 15 Feb 2012: if (fTestNet && pblock->nTime > 1329264000) { // If the new block's timestamp is more than 2* 10 minutes // then allow mining of a min-difficulty block. if (pblock->nTime - pindexLast->nTime > nTargetSpacing*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 14 days worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < nInterval-1; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); printf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan); if (nActualTimespan < nTargetTimespan/4) nActualTimespan = nTargetTimespan/4; if (nActualTimespan > nTargetTimespan*4) nActualTimespan = nTargetTimespan*4; // Retarget CBigNum bnNew; bnNew.SetCompact(pindexLast->nBits); bnNew *= nActualTimespan; bnNew /= nTargetTimespan; if (bnNew > bnProofOfWorkLimit) bnNew = bnProofOfWorkLimit; /// debug print printf("GetNextWorkRequired RETARGET\n"); printf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan); printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str()); printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str()); return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { CBigNum bnTarget; bnTarget.SetCompact(nBits); // Check range if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget.getuint256()) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } // Return maximum amount of blocks that other nodes claim to have int GetNumBlocksOfPeers() { return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate()); } bool IsInitialBlockDownload() { if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate()) return true; static int64 nLastUpdate; static CBlockIndex* pindexLastBest; if (pindexBest != pindexLastBest) { pindexLastBest = pindexBest; nLastUpdate = GetTime(); } return (GetTime() - nLastUpdate < 10 && pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (pindexNew->bnChainWork > bnBestInvalidWork) { bnBestInvalidWork = pindexNew->bnChainWork; CTxDB().WriteBestInvalidWork(bnBestInvalidWork); MainFrameRepaint(); } printf("InvalidChainFound: invalid block=%s height=%d work=%s\n", pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight, pindexNew->bnChainWork.ToString().c_str()); printf("InvalidChainFound: current best=%s height=%d work=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str()); if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6) printf("InvalidChainFound: WARNING: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n"); } void CBlock::UpdateTime(const CBlockIndex* pindexPrev) { nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); // Updating time can change work required on testnet: if (fTestNet) nBits = GetNextWorkRequired(pindexPrev, this); } bool CTransaction::DisconnectInputs(CTxDB& txdb) { // Relinquish previous transactions' spent pointers if (!IsCoinBase()) { BOOST_FOREACH(const CTxIn& txin, vin) { COutPoint prevout = txin.prevout; // Get prev txindex from disk CTxIndex txindex; if (!txdb.ReadTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : ReadTxIndex failed"); if (prevout.n >= txindex.vSpent.size()) return error("DisconnectInputs() : prevout.n out of range"); // Mark outpoint as not spent txindex.vSpent[prevout.n].SetNull(); // Write back if (!txdb.UpdateTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : UpdateTxIndex failed"); } } // Remove transaction from index if (!txdb.EraseTxIndex(*this)) return error("DisconnectInputs() : EraseTxPos failed"); return true; } bool CTransaction::FetchInputs(CTxDB& txdb, const map& mapTestPool, bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid) { // FetchInputs can return false either because we just haven't seen some inputs // (in which case the transaction should be stored as an orphan) // or because the transaction is malformed (in which case the transaction should // be dropped). If tx is definitely invalid, fInvalid will be set to true. fInvalid = false; if (IsCoinBase()) return true; // Coinbase transactions have no inputs to fetch. for (int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; if (inputsRet.count(prevout.hash)) continue; // Got it already // Read txindex CTxIndex& txindex = inputsRet[prevout.hash].first; bool fFound = true; if ((fBlock || fMiner) && mapTestPool.count(prevout.hash)) { // Get txindex from current proposed changes txindex = mapTestPool.find(prevout.hash)->second; } else { // Read txindex from txdb fFound = txdb.ReadTxIndex(prevout.hash, txindex); } if (!fFound && (fBlock || fMiner)) return fMiner ? false : error("FetchInputs() : %s prev tx %s index entry not found", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); // Read txPrev CTransaction& txPrev = inputsRet[prevout.hash].second; if (!fFound || txindex.pos == CDiskTxPos(1,1,1)) { // Get prev tx from single transactions in memory CRITICAL_BLOCK(cs_mapTransactions) { if (!mapTransactions.count(prevout.hash)) return error("FetchInputs() : %s mapTransactions prev not found %s", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); txPrev = mapTransactions[prevout.hash]; } if (!fFound) txindex.vSpent.resize(txPrev.vout.size()); } else { // Get prev tx from disk if (!txPrev.ReadFromDisk(txindex.pos)) return error("FetchInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); } } // Make sure all prevout.n's are valid: for (int i = 0; i < vin.size(); i++) { const COutPoint prevout = vin[i].prevout; assert(inputsRet.count(prevout.hash) != 0); const CTxIndex& txindex = inputsRet[prevout.hash].first; const CTransaction& txPrev = inputsRet[prevout.hash].second; if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size()) { // Revisit this if/when transaction replacement is implemented and allows // adding inputs: fInvalid = true; return DoS(100, error("FetchInputs() : %s prevout.n out of range %d %d %d prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str())); } } return true; } const CTxOut& CTransaction::GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const { MapPrevTx::const_iterator mi = inputs.find(input.prevout.hash); if (mi == inputs.end()) throw std::runtime_error("CTransaction::GetOutputFor() : prevout.hash not found"); const CTransaction& txPrev = (mi->second).second; if (input.prevout.n >= txPrev.vout.size()) throw std::runtime_error("CTransaction::GetOutputFor() : prevout.n out of range"); return txPrev.vout[input.prevout.n]; } int64 CTransaction::GetValueIn(const MapPrevTx& inputs) const { if (IsCoinBase()) return 0; int64 nResult = 0; for (int i = 0; i < vin.size(); i++) { nResult += GetOutputFor(vin[i], inputs).nValue; } return nResult; } int CTransaction::GetP2SHSigOpCount(const MapPrevTx& inputs) const { if (IsCoinBase()) return 0; int nSigOps = 0; for (int i = 0; i < vin.size(); i++) { const CTxOut& prevout = GetOutputFor(vin[i], inputs); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig); } return nSigOps; } bool CTransaction::ConnectInputs(MapPrevTx inputs, map& mapTestPool, const CDiskTxPos& posThisTx, const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, bool fStrictPayToScriptHash) { // Take over previous transactions' spent pointers // fBlock is true when this is called from AcceptBlock when a new best-block is added to the blockchain // fMiner is true when called from the internal bitcoin miner // ... both are false when called from CTransaction::AcceptToMemoryPool if (!IsCoinBase()) { int64 nValueIn = 0; int64 nFees = 0; for (int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; assert(inputs.count(prevout.hash) > 0); CTxIndex& txindex = inputs[prevout.hash].first; CTransaction& txPrev = inputs[prevout.hash].second; if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size()) return DoS(100, error("ConnectInputs() : %s prevout.n out of range %d %d %d prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str())); // If prev is coinbase, check that it's matured if (txPrev.IsCoinBase()) for (const CBlockIndex* pindex = pindexBlock; pindex && pindexBlock->nHeight - pindex->nHeight < COINBASE_MATURITY; pindex = pindex->pprev) if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile) return error("ConnectInputs() : tried to spend coinbase at depth %d", pindexBlock->nHeight - pindex->nHeight); // Check for conflicts (double-spend) // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!txindex.vSpent[prevout.n].IsNull()) return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString().substr(0,10).c_str(), txindex.vSpent[prevout.n].ToString().c_str()); // Check for negative or overflow input values nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return DoS(100, error("ConnectInputs() : txin values out of range")); // Skip ECDSA signature verification when connecting blocks (fBlock=true) // before the last blockchain checkpoint. This is safe because block merkle hashes are // still computed and checked, and any change will be caught at the next checkpoint. if (!(fBlock && (nBestHeight < Checkpoints::GetTotalBlocksEstimate()))) { // Verify signature if (!VerifySignature(txPrev, *this, i, fStrictPayToScriptHash, 0)) return DoS(100,error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str())); } // Mark outpoints as spent txindex.vSpent[prevout.n] = posThisTx; // Write back if (fBlock || fMiner) { mapTestPool[prevout.hash] = txindex; } } if (nValueIn < GetValueOut()) return DoS(100, error("ConnectInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str())); // Tally transaction fees int64 nTxFee = nValueIn - GetValueOut(); if (nTxFee < 0) return DoS(100, error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str())); nFees += nTxFee; if (!MoneyRange(nFees)) return DoS(100, error("ConnectInputs() : nFees out of range")); } return true; } bool CTransaction::ClientConnectInputs() { if (IsCoinBase()) return false; // Take over previous transactions' spent pointers CRITICAL_BLOCK(cs_mapTransactions) { int64 nValueIn = 0; for (int i = 0; i < vin.size(); i++) { // Get prev tx from single transactions in memory COutPoint prevout = vin[i].prevout; if (!mapTransactions.count(prevout.hash)) return false; CTransaction& txPrev = mapTransactions[prevout.hash]; if (prevout.n >= txPrev.vout.size()) return false; // Verify signature if (!VerifySignature(txPrev, *this, i, true, 0)) return error("ConnectInputs() : VerifySignature failed"); ///// this is redundant with the mapNextTx stuff, not sure which I want to get rid of ///// this has to go away now that posNext is gone // // Check for conflicts // if (!txPrev.vout[prevout.n].posNext.IsNull()) // return error("ConnectInputs() : prev tx already used"); // // // Flag outpoints as used // txPrev.vout[prevout.n].posNext = posThisTx; nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return error("ClientConnectInputs() : txin values out of range"); } if (GetValueOut() > nValueIn) return false; } return true; } bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex) { // Disconnect in reverse order for (int i = vtx.size()-1; i >= 0; i--) if (!vtx[i].DisconnectInputs(txdb)) return false; // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = 0; if (!txdb.WriteBlockIndex(blockindexPrev)) return error("DisconnectBlock() : WriteBlockIndex failed"); } return true; } bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex) { // Check it again in case a previous version let a bad block in if (!CheckBlock()) return false; // To avoid being on the short end of a block-chain split, // don't do secondary validation of pay-to-script-hash transactions // until blocks with timestamps after paytoscripthashtime (see init.cpp for default). // This code can be removed once a super-majority of the network has upgraded. int64 nEvalSwitchTime = GetArg("-paytoscripthashtime", std::numeric_limits::max()); bool fStrictPayToScriptHash = (pindex->nTime >= nEvalSwitchTime); //// issue here: it doesn't know the version unsigned int nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK) - 1 + GetSizeOfCompactSize(vtx.size()); map mapQueuedChanges; int64 nFees = 0; int nSigOps = 0; BOOST_FOREACH(CTransaction& tx, vtx) { nSigOps += tx.GetLegacySigOpCount(); if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("ConnectBlock() : too many sigops")); CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos); nTxPos += ::GetSerializeSize(tx, SER_DISK); MapPrevTx mapInputs; if (!tx.IsCoinBase()) { bool fInvalid; if (!tx.FetchInputs(txdb, mapQueuedChanges, true, false, mapInputs, fInvalid)) return false; if (fStrictPayToScriptHash) { // Add in sigops done by pay-to-script-hash inputs; // this is to prevent a "rogue miner" from creating // an incredibly-expensive-to-validate block. nSigOps += tx.GetP2SHSigOpCount(mapInputs); if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("ConnectBlock() : too many sigops")); } nFees += tx.GetValueIn(mapInputs)-tx.GetValueOut(); if (!tx.ConnectInputs(mapInputs, mapQueuedChanges, posThisTx, pindex, true, false, fStrictPayToScriptHash)) return false; } mapQueuedChanges[tx.GetHash()] = CTxIndex(posThisTx, tx.vout.size()); } // Write queued txindex changes for (map::iterator mi = mapQueuedChanges.begin(); mi != mapQueuedChanges.end(); ++mi) { if (!txdb.UpdateTxIndex((*mi).first, (*mi).second)) return error("ConnectBlock() : UpdateTxIndex failed"); } if (vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees)) return false; // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = pindex->GetBlockHash(); if (!txdb.WriteBlockIndex(blockindexPrev)) return error("ConnectBlock() : WriteBlockIndex failed"); } // Watch for transactions paying to me BOOST_FOREACH(CTransaction& tx, vtx) SyncWithWallets(tx, this, true); return true; } bool static Reorganize(CTxDB& txdb, CBlockIndex* pindexNew) { printf("REORGANIZE\n"); // Find the fork CBlockIndex* pfork = pindexBest; CBlockIndex* plonger = pindexNew; while (pfork != plonger) { while (plonger->nHeight > pfork->nHeight) if (!(plonger = plonger->pprev)) return error("Reorganize() : plonger->pprev is null"); if (pfork == plonger) break; if (!(pfork = pfork->pprev)) return error("Reorganize() : pfork->pprev is null"); } // List of what to disconnect vector vDisconnect; for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev) vDisconnect.push_back(pindex); // List of what to connect vector vConnect; for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev) vConnect.push_back(pindex); reverse(vConnect.begin(), vConnect.end()); // Disconnect shorter branch vector vResurrect; BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) { CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for disconnect failed"); if (!block.DisconnectBlock(txdb, pindex)) return error("Reorganize() : DisconnectBlock failed"); // Queue memory transactions to resurrect BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!tx.IsCoinBase()) vResurrect.push_back(tx); } // Connect longer branch vector vDelete; for (int i = 0; i < vConnect.size(); i++) { CBlockIndex* pindex = vConnect[i]; CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for connect failed"); if (!block.ConnectBlock(txdb, pindex)) { // Invalid block txdb.TxnAbort(); return error("Reorganize() : ConnectBlock failed"); } // Queue memory transactions to delete BOOST_FOREACH(const CTransaction& tx, block.vtx) vDelete.push_back(tx); } if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash())) return error("Reorganize() : WriteHashBestChain failed"); // Make sure it's successfully written to disk before changing memory structure if (!txdb.TxnCommit()) return error("Reorganize() : TxnCommit failed"); // Disconnect shorter branch BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) if (pindex->pprev) pindex->pprev->pnext = NULL; // Connect longer branch BOOST_FOREACH(CBlockIndex* pindex, vConnect) if (pindex->pprev) pindex->pprev->pnext = pindex; // Resurrect memory transactions that were in the disconnected branch BOOST_FOREACH(CTransaction& tx, vResurrect) tx.AcceptToMemoryPool(txdb, false); // Delete redundant memory transactions that are in the connected branch BOOST_FOREACH(CTransaction& tx, vDelete) tx.RemoveFromMemoryPool(); printf("REORGANIZE: Disconnected %i blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexBest->GetBlockHash().ToString().substr(0,20).c_str()); printf("REORGANIZE: Connected %i blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->GetBlockHash().ToString().substr(0,20).c_str()); return true; } static void runCommand(std::string strCommand) { int nErr = ::system(strCommand.c_str()); if (nErr) printf("runCommand error: system(%s) returned %d\n", strCommand.c_str(), nErr); } bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew) { uint256 hash = GetHash(); txdb.TxnBegin(); if (pindexGenesisBlock == NULL && hash == hashGenesisBlock) { txdb.WriteHashBestChain(hash); if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); pindexGenesisBlock = pindexNew; } else if (hashPrevBlock == hashBestChain) { // Adding to current best branch if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return error("SetBestChain() : ConnectBlock failed"); } if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); // Add to current best branch pindexNew->pprev->pnext = pindexNew; // Delete redundant memory transactions BOOST_FOREACH(CTransaction& tx, vtx) tx.RemoveFromMemoryPool(); } else { // New best branch if (!Reorganize(txdb, pindexNew)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return error("SetBestChain() : Reorganize failed"); } } // Update best block in wallet (so we can detect restored wallets) bool fIsInitialDownload = IsInitialBlockDownload(); if (!fIsInitialDownload) { const CBlockLocator locator(pindexNew); ::SetBestChain(locator); } // New best block hashBestChain = hash; pindexBest = pindexNew; nBestHeight = pindexBest->nHeight; bnBestChainWork = pindexNew->bnChainWork; nTimeBestReceived = GetTime(); nTransactionsUpdated++; printf("SetBestChain: new best=%s height=%d work=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str()); std::string strCmd = GetArg("-blocknotify", ""); if (!fIsInitialDownload && !strCmd.empty()) { boost::replace_all(strCmd, "%s", hashBestChain.GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } return true; } bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos) { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str()); // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(nFile, nBlockPos, *this); if (!pindexNew) return error("AddToBlockIndex() : new CBlockIndex failed"); map::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); map::iterator miPrev = mapBlockIndex.find(hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; } pindexNew->bnChainWork = (pindexNew->pprev ? pindexNew->pprev->bnChainWork : 0) + pindexNew->GetBlockWork(); CTxDB txdb; txdb.TxnBegin(); txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew)); if (!txdb.TxnCommit()) return false; // New best if (pindexNew->bnChainWork > bnBestChainWork) if (!SetBestChain(txdb, pindexNew)) return false; txdb.Close(); if (pindexNew == pindexBest) { // Notify UI to display prev block's coinbase if it was ours static uint256 hashPrevBestCoinBase; UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = vtx[0].GetHash(); } MainFrameRepaint(); return true; } bool CBlock::CheckBlock() const { // These are checks that are independent of context // that can be verified before saving an orphan block. // Size limits if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK) > MAX_BLOCK_SIZE) return DoS(100, error("CheckBlock() : size limits failed")); // Check proof of work matches claimed amount if (!CheckProofOfWork(GetHash(), nBits)) return DoS(50, error("CheckBlock() : proof of work failed")); // Check timestamp if (GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60) return error("CheckBlock() : block timestamp too far in the future"); // First transaction must be coinbase, the rest must not be if (vtx.empty() || !vtx[0].IsCoinBase()) return DoS(100, error("CheckBlock() : first tx is not coinbase")); for (int i = 1; i < vtx.size(); i++) if (vtx[i].IsCoinBase()) return DoS(100, error("CheckBlock() : more than one coinbase")); // Check transactions BOOST_FOREACH(const CTransaction& tx, vtx) if (!tx.CheckTransaction()) return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed")); int nSigOps = 0; BOOST_FOREACH(const CTransaction& tx, vtx) { nSigOps += tx.GetLegacySigOpCount(); } if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount")); // Check merkleroot if (hashMerkleRoot != BuildMerkleTree()) return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch")); return true; } bool CBlock::AcceptBlock() { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AcceptBlock() : block already in mapBlockIndex"); // Get prev block index map::iterator mi = mapBlockIndex.find(hashPrevBlock); if (mi == mapBlockIndex.end()) return DoS(10, error("AcceptBlock() : prev block not found")); CBlockIndex* pindexPrev = (*mi).second; int nHeight = pindexPrev->nHeight+1; // Check proof of work if (nBits != GetNextWorkRequired(pindexPrev, this)) return DoS(100, error("AcceptBlock() : incorrect proof of work")); // Check timestamp against prev if (GetBlockTime() <= pindexPrev->GetMedianTimePast()) return error("AcceptBlock() : block's timestamp is too early"); // Check that all transactions are finalized BOOST_FOREACH(const CTransaction& tx, vtx) if (!tx.IsFinal(nHeight, GetBlockTime())) return DoS(10, error("AcceptBlock() : contains a non-final transaction")); // Check that the block chain matches the known block chain up to a checkpoint if (!Checkpoints::CheckBlock(nHeight, hash)) return DoS(100, error("AcceptBlock() : rejected by checkpoint lockin at %d", nHeight)); // Write block to history file if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK))) return error("AcceptBlock() : out of disk space"); unsigned int nFile = -1; unsigned int nBlockPos = 0; if (!WriteToDisk(nFile, nBlockPos)) return error("AcceptBlock() : WriteToDisk failed"); if (!AddToBlockIndex(nFile, nBlockPos)) return error("AcceptBlock() : AddToBlockIndex failed"); // Relay inventory, but don't relay old inventory during initial block download if (hashBestChain == hash) CRITICAL_BLOCK(cs_vNodes) BOOST_FOREACH(CNode* pnode, vNodes) if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 140700)) pnode->PushInventory(CInv(MSG_BLOCK, hash)); return true; } bool ProcessBlock(CNode* pfrom, CBlock* pblock) { // Check for duplicate uint256 hash = pblock->GetHash(); if (mapBlockIndex.count(hash)) return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str()); if (mapOrphanBlocks.count(hash)) return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str()); // Preliminary checks if (!pblock->CheckBlock()) return error("ProcessBlock() : CheckBlock FAILED"); CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex); if (pcheckpoint && pblock->hashPrevBlock != hashBestChain) { // Extra checks to prevent "fill up memory by spamming with bogus blocks" int64 deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime; if (deltaTime < 0) { pfrom->Misbehaving(100); return error("ProcessBlock() : block with timestamp before last checkpoint"); } CBigNum bnNewBlock; bnNewBlock.SetCompact(pblock->nBits); CBigNum bnRequired; bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime)); if (bnNewBlock > bnRequired) { pfrom->Misbehaving(100); return error("ProcessBlock() : block with too little proof-of-work"); } } // If don't already have its previous block, shunt it off to holding area until we get it if (!mapBlockIndex.count(pblock->hashPrevBlock)) { printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str()); CBlock* pblock2 = new CBlock(*pblock); mapOrphanBlocks.insert(make_pair(hash, pblock2)); mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2)); // Ask this guy to fill in what we're missing if (pfrom) pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2)); return true; } // Store to disk if (!pblock->AcceptBlock()) return error("ProcessBlock() : AcceptBlock FAILED"); // Recursively process any orphan blocks that depended on this one vector vWorkQueue; vWorkQueue.push_back(hash); for (int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev); mi != mapOrphanBlocksByPrev.upper_bound(hashPrev); ++mi) { CBlock* pblockOrphan = (*mi).second; if (pblockOrphan->AcceptBlock()) vWorkQueue.push_back(pblockOrphan->GetHash()); mapOrphanBlocks.erase(pblockOrphan->GetHash()); delete pblockOrphan; } mapOrphanBlocksByPrev.erase(hashPrev); } printf("ProcessBlock: ACCEPTED\n"); return true; } bool CheckDiskSpace(uint64 nAdditionalBytes) { uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for 15MB because database could create another 10MB log file at any time if (nFreeBytesAvailable < (uint64)15000000 + nAdditionalBytes) { fShutdown = true; string strMessage = _("Warning: Disk space is low "); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); ThreadSafeMessageBox(strMessage, "Bitcoin", wxOK | wxICON_EXCLAMATION); CreateThread(Shutdown, NULL); return false; } return true; } FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode) { if (nFile == -1) return NULL; FILE* file = fopen(strprintf("%s/blk%04d.dat", GetDataDir().c_str(), nFile).c_str(), pszMode); if (!file) return NULL; if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w')) { if (fseek(file, nBlockPos, SEEK_SET) != 0) { fclose(file); return NULL; } } return file; } static unsigned int nCurrentBlockFile = 1; FILE* AppendBlockFile(unsigned int& nFileRet) { nFileRet = 0; loop { FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab"); if (!file) return NULL; if (fseek(file, 0, SEEK_END) != 0) return NULL; // FAT32 filesize max 4GB, fseek and ftell max 2GB, so we must stay under 2GB if (ftell(file) < 0x7F000000 - MAX_SIZE) { nFileRet = nCurrentBlockFile; return file; } fclose(file); nCurrentBlockFile++; } } bool LoadBlockIndex(bool fAllowNew) { if (fTestNet) { hashGenesisBlock = uint256("0x00000007199508e34a9ff81e6ec0c477a4cccff2a4767a8eee39c11db367b008"); bnProofOfWorkLimit = CBigNum(~uint256(0) >> 28); pchMessageStart[0] = 0xfa; pchMessageStart[1] = 0xbf; pchMessageStart[2] = 0xb5; pchMessageStart[3] = 0xda; } // // Load block index // CTxDB txdb("cr"); if (!txdb.LoadBlockIndex()) return false; txdb.Close(); // // Init with genesis block // if (mapBlockIndex.empty()) { if (!fAllowNew) return false; // Genesis Block: // CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, vtx=1) // CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0) // CTxIn(COutPoint(000000, -1), coinbase 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73) // CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B) // vMerkleTree: 4a5e1e // Genesis block const char* pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"; CTransaction txNew; txNew.vin.resize(1); txNew.vout.resize(1); txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(4) << vector((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp)); txNew.vout[0].nValue = 50 * COIN; txNew.vout[0].scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; CBlock block; block.vtx.push_back(txNew); block.hashPrevBlock = 0; block.hashMerkleRoot = block.BuildMerkleTree(); block.nVersion = 1; block.nTime = 1231006505; block.nBits = 0x1d00ffff; block.nNonce = 2083236893; if (fTestNet) { block.nTime = 1296688602; block.nBits = 0x1d07fff8; block.nNonce = 384568319; } //// debug print printf("%s\n", block.GetHash().ToString().c_str()); printf("%s\n", hashGenesisBlock.ToString().c_str()); printf("%s\n", block.hashMerkleRoot.ToString().c_str()); assert(block.hashMerkleRoot == uint256("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b")); block.print(); assert(block.GetHash() == hashGenesisBlock); // Start new block file unsigned int nFile; unsigned int nBlockPos; if (!block.WriteToDisk(nFile, nBlockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); if (!block.AddToBlockIndex(nFile, nBlockPos)) return error("LoadBlockIndex() : genesis block not accepted"); } return true; } void PrintBlockTree() { // precompute tree structure map > mapNext; for (map::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, pindexGenesisBlock)); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) printf("| "); printf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) printf("| "); printf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) printf("| "); // print item CBlock block; block.ReadFromDisk(pindex); printf("%d (%u,%u) %s %s tx %d", pindex->nHeight, pindex->nFile, pindex->nBlockPos, block.GetHash().ToString().substr(0,20).c_str(), DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(), block.vtx.size()); PrintWallets(block); // put the main timechain first vector& vNext = mapNext[pindex]; for (int i = 0; i < vNext.size(); i++) { if (vNext[i]->pnext) { swap(vNext[0], vNext[i]); break; } } // iterate children for (int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } ////////////////////////////////////////////////////////////////////////////// // // CAlert // map mapAlerts; CCriticalSection cs_mapAlerts; string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (GetBoolArg("-testsafemode")) strRPC = "test"; // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { nPriority = 1000; strStatusBar = strMiscWarning; } // Longer invalid proof-of-work chain if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6) { nPriority = 2000; strStatusBar = strRPC = "WARNING: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade."; } // Alerts CRITICAL_BLOCK(cs_mapAlerts) { BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings() : invalid parameter"); return "error"; } bool CAlert::ProcessAlert() { if (!CheckSignature()) return false; if (!IsInEffect()) return false; CRITICAL_BLOCK(cs_mapAlerts) { // Cancel previous alerts for (map::iterator mi = mapAlerts.begin(); mi != mapAlerts.end();) { const CAlert& alert = (*mi).second; if (Cancels(alert)) { printf("cancelling alert %d\n", alert.nID); mapAlerts.erase(mi++); } else if (!alert.IsInEffect()) { printf("expiring alert %d\n", alert.nID); mapAlerts.erase(mi++); } else mi++; } // Check if this alert has been cancelled BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.Cancels(*this)) { printf("alert already cancelled by %d\n", alert.nID); return false; } } // Add to mapAlerts mapAlerts.insert(make_pair(GetHash(), *this)); } printf("accepted alert %d, AppliesToMe()=%d\n", nID, AppliesToMe()); MainFrameRepaint(); return true; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(CTxDB& txdb, const CInv& inv) { switch (inv.type) { case MSG_TX: return mapTransactions.count(inv.hash) || mapOrphanTransactions.count(inv.hash) || txdb.ContainsTx(inv.hash); case MSG_BLOCK: return mapBlockIndex.count(inv.hash) || mapOrphanBlocks.count(inv.hash); } // Don't know what it is, just say we already got one return true; } // The message start string is designed to be unlikely to occur in normal data. // The characters are rarely used upper ascii, not valid as UTF-8, and produce // a large 4-byte int at any alignment. unsigned char pchMessageStart[4] = { 0xf9, 0xbe, 0xb4, 0xd9 }; bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv) { static map > mapReuseKey; RandAddSeedPerfmon(); if (fDebug) { printf("%s ", DateTimeStrFormat("%x %H:%M:%S", GetTime()).c_str()); printf("received: %s (%d bytes)\n", strCommand.c_str(), vRecv.size()); } if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { printf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) { pfrom->Misbehaving(1); return false; } int64 nTime; CAddress addrMe; CAddress addrFrom; uint64 nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (pfrom->nVersion >= 106 && !vRecv.empty()) vRecv >> addrFrom >> nNonce; if (pfrom->nVersion >= 106 && !vRecv.empty()) vRecv >> pfrom->strSubVer; if (pfrom->nVersion >= 209 && !vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (pfrom->nVersion == 0) return false; // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str()); pfrom->fDisconnect = true; return true; } // Be shy and don't send version until we hear if (pfrom->fInbound) pfrom->PushVersion(); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); AddTimeData(pfrom->addr, nTime); // Change version if (pfrom->nVersion >= 209) pfrom->PushMessage("verack"); pfrom->vSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (pfrom->nVersion < 209) pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (!fNoListen && !fUseProxy && addrLocalHost.IsRoutable() && !IsInitialBlockDownload()) { CAddress addr(addrLocalHost); addr.nTime = GetAdjustedTime(); pfrom->PushAddress(addr); } // Get recent addresses if (pfrom->nVersion >= 31402 || mapAddresses.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } } // Ask the first connected node for block updates static int nAskedForBlocks = 0; if (!pfrom->fClient && (pfrom->nVersion < 32000 || pfrom->nVersion >= 32400) && (nAskedForBlocks < 1 || vNodes.size() <= 1)) { nAskedForBlocks++; pfrom->PushGetBlocks(pindexBest, uint256(0)); } // Relay alerts CRITICAL_BLOCK(cs_mapAlerts) BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); pfrom->fSuccessfullyConnected = true; printf("version message: version %d, blocks=%d\n", pfrom->nVersion, pfrom->nStartingHeight); cPeerBlockCounts.input(pfrom->nStartingHeight); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else pfrom->Misbehaving(1); return false; } else if (strCommand == "verack") { pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < 209) return true; if (pfrom->nVersion < 31402 && mapAddresses.size() > 1000) return true; if (vAddr.size() > 1000) { pfrom->Misbehaving(20); return error("message addr size() = %d", vAddr.size()); } // Store the new addresses CAddrDB addrDB; addrDB.TxnBegin(); int64 nNow = GetAdjustedTime(); int64 nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { if (fShutdown) return true; // ignore IPv6 for now, since it isn't implemented anyway if (!addr.IsIPv4()) continue; if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; AddAddress(addr, 2 * 60 * 60, &addrDB); pfrom->AddAddressKnown(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes CRITICAL_BLOCK(cs_vNodes) { // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) RAND_bytes((unsigned char*)&hashSalt, sizeof(hashSalt)); int64 hashAddr = addr.GetHash(); uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60)); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->nVersion < 31402) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = 2; for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } } addrDB.TxnCommit(); // Save addresses (it's ok if this fails) if (vAddr.size() < 1000) pfrom->fGetAddr = false; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > 50000) { pfrom->Misbehaving(20); return error("message inv size() = %d", vInv.size()); } CTxDB txdb("r"); BOOST_FOREACH(const CInv& inv, vInv) { if (fShutdown) return true; pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(txdb, inv); if (fDebug) printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new"); if (!fAlreadyHave) pfrom->AskFor(inv); else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash])); // Track requests for our stuff Inventory(inv.hash); } } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > 50000) { pfrom->Misbehaving(20); return error("message getdata size() = %d", vInv.size()); } BOOST_FOREACH(const CInv& inv, vInv) { if (fShutdown) return true; printf("received getdata for: %s\n", inv.ToString().c_str()); if (inv.type == MSG_BLOCK) { // Send block from disk map::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { CBlock block; block.ReadFromDisk((*mi).second); pfrom->PushMessage("block", block); // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, hashBestChain)); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory CRITICAL_BLOCK(cs_mapRelay) { map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) pfrom->PushMessage(inv.GetCommand(), (*mi).second); } } // Track requests for our stuff Inventory(inv.hash); } } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; // Find the last block the caller has in the main chain CBlockIndex* pindex = locator.GetBlockIndex(); // Send the rest of the chain if (pindex) pindex = pindex->pnext; int nLimit = 500 + locator.GetDistanceBack(); unsigned int nBytes = 0; printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit); for (; pindex; pindex = pindex->pnext) { if (pindex->GetBlockHash() == hashStop) { printf(" getblocks stopping at %d %s (%u bytes)\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str(), nBytes); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); CBlock block; block.ReadFromDisk(pindex, true); nBytes += block.GetSerializeSize(SER_NETWORK); if (--nLimit <= 0 || nBytes >= SendBufferSize()/2) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. printf(" getblocks stopping at limit %d %s (%u bytes)\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str(), nBytes); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block map::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = locator.GetBlockIndex(); if (pindex) pindex = pindex->pnext; } vector vHeaders; int nLimit = 2000 + locator.GetDistanceBack(); printf("getheaders %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit); for (; pindex; pindex = pindex->pnext) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx") { vector vWorkQueue; CDataStream vMsg(vRecv); CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); bool fMissingInputs = false; if (tx.AcceptToMemoryPool(true, &fMissingInputs)) { SyncWithWallets(tx, NULL, true); RelayMessage(inv, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); // Recursively process any orphan transactions that depended on this one for (int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanTransactionsByPrev.lower_bound(hashPrev); mi != mapOrphanTransactionsByPrev.upper_bound(hashPrev); ++mi) { const CDataStream& vMsg = *((*mi).second); CTransaction tx; CDataStream(vMsg) >> tx; CInv inv(MSG_TX, tx.GetHash()); if (tx.AcceptToMemoryPool(true)) { printf(" accepted orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str()); SyncWithWallets(tx, NULL, true); RelayMessage(inv, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); } } } BOOST_FOREACH(uint256 hash, vWorkQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { printf("storing orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str()); AddOrphanTx(vMsg); } if (tx.nDoS) pfrom->Misbehaving(tx.nDoS); } else if (strCommand == "block") { CBlock block; vRecv >> block; printf("received block %s\n", block.GetHash().ToString().substr(0,20).c_str()); // block.print(); CInv inv(MSG_BLOCK, block.GetHash()); pfrom->AddInventoryKnown(inv); if (ProcessBlock(pfrom, &block)) mapAlreadyAskedFor.erase(inv); if (block.nDoS) pfrom->Misbehaving(block.nDoS); } else if (strCommand == "getaddr") { // Nodes rebroadcast an addr every 24 hours pfrom->vAddrToSend.clear(); int64 nSince = GetAdjustedTime() - 3 * 60 * 60; // in the last 3 hours CRITICAL_BLOCK(cs_mapAddresses) { unsigned int nCount = 0; BOOST_FOREACH(const PAIRTYPE(vector, CAddress)& item, mapAddresses) { const CAddress& addr = item.second; if (addr.nTime > nSince) nCount++; } BOOST_FOREACH(const PAIRTYPE(vector, CAddress)& item, mapAddresses) { const CAddress& addr = item.second; if (addr.nTime > nSince && GetRand(nCount) < 2500) pfrom->PushAddress(addr); } } } else if (strCommand == "checkorder") { uint256 hashReply; vRecv >> hashReply; if (!GetBoolArg("-allowreceivebyip")) { pfrom->PushMessage("reply", hashReply, (int)2, string("")); return true; } CWalletTx order; vRecv >> order; /// we have a chance to check the order here // Keep giving the same key to the same ip until they use it if (!mapReuseKey.count(pfrom->addr)) pwalletMain->GetKeyFromPool(mapReuseKey[pfrom->addr], true); // Send back approval of order and pubkey to use CScript scriptPubKey; scriptPubKey << mapReuseKey[pfrom->addr] << OP_CHECKSIG; pfrom->PushMessage("reply", hashReply, (int)0, scriptPubKey); } else if (strCommand == "reply") { uint256 hashReply; vRecv >> hashReply; CRequestTracker tracker; CRITICAL_BLOCK(pfrom->cs_mapRequests) { map::iterator mi = pfrom->mapRequests.find(hashReply); if (mi != pfrom->mapRequests.end()) { tracker = (*mi).second; pfrom->mapRequests.erase(mi); } } if (!tracker.IsNull()) tracker.fn(tracker.param1, vRecv); } else if (strCommand == "ping") { } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alert.GetHash()); CRITICAL_BLOCK(cs_vNodes) BOOST_FOREACH(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Ignore unknown commands for extensibility } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } bool ProcessMessages(CNode* pfrom) { CDataStream& vRecv = pfrom->vRecv; if (vRecv.empty()) return true; //if (fDebug) // printf("ProcessMessages(%u bytes)\n", vRecv.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // loop { // Scan for message start CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart)); int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader()); if (vRecv.end() - pstart < nHeaderSize) { if (vRecv.size() > nHeaderSize) { printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n"); vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize); } break; } if (pstart - vRecv.begin() > 0) printf("\n\nPROCESSMESSAGE SKIPPED %d BYTES\n\n", pstart - vRecv.begin()); vRecv.erase(vRecv.begin(), pstart); // Read header vector vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize); CMessageHeader hdr; vRecv >> hdr; if (!hdr.IsValid()) { printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str()); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; if (nMessageSize > MAX_SIZE) { printf("ProcessMessage(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize); continue; } if (nMessageSize > vRecv.size()) { // Rewind and wait for rest of message vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end()); break; } // Checksum if (vRecv.GetVersion() >= 209) { uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { printf("ProcessMessage(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum); continue; } } // Copy message to its own buffer CDataStream vMsg(vRecv.begin(), vRecv.begin() + nMessageSize, vRecv.nType, vRecv.nVersion); vRecv.ignore(nMessageSize); // Process message bool fRet = false; try { CRITICAL_BLOCK(cs_main) fRet = ProcessMessage(pfrom, strCommand, vMsg); if (fShutdown) return true; } catch (std::ios_base::failure& e) { if (strstr(e.what(), "end of data")) { // Allow exceptions from underlength message on vRecv printf("ProcessMessage(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from overlong size printf("ProcessMessage(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessage()"); } } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessage()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessage()"); } if (!fRet) printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize); } vRecv.Compact(); return true; } bool SendMessages(CNode* pto, bool fSendTrickle) { CRITICAL_BLOCK(cs_main) { // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // Keep-alive ping if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSend.empty()) pto->PushMessage("ping"); // Resend wallet transactions that haven't gotten in a block yet ResendWalletTransactions(); // Address refresh broadcast static int64 nLastRebroadcast; if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60)) { CRITICAL_BLOCK(cs_vNodes) { BOOST_FOREACH(CNode* pnode, vNodes) { // Periodically clear setAddrKnown to allow refresh broadcasts if (nLastRebroadcast) pnode->setAddrKnown.clear(); // Rebroadcast our address if (!fNoListen && !fUseProxy && addrLocalHost.IsRoutable()) { CAddress addr(addrLocalHost); addr.nTime = GetAdjustedTime(); pnode->PushAddress(addr); } } } nLastRebroadcast = GetTime(); } // Clear out old addresses periodically so it's not too much work at once static int64 nLastClear; if (nLastClear == 0) nLastClear = GetTime(); if (GetTime() - nLastClear > 10 * 60 && vNodes.size() >= 3) { nLastClear = GetTime(); CRITICAL_BLOCK(cs_mapAddresses) { CAddrDB addrdb; int64 nSince = GetAdjustedTime() - 14 * 24 * 60 * 60; for (map, CAddress>::iterator mi = mapAddresses.begin(); mi != mapAddresses.end();) { const CAddress& addr = (*mi).second; if (addr.nTime < nSince) { if (mapAddresses.size() < 1000 || GetTime() > nLastClear + 20) break; addrdb.EraseAddress(addr); mapAddresses.erase(mi++); } else mi++; } } } // // Message: addr // if (fSendTrickle) { vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { // returns true if wasn't already contained in the set if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } // // Message: inventory // vector vInv; vector vInvWait; CRITICAL_BLOCK(pto->cs_inventory) { vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) RAND_bytes((unsigned char*)&hashSalt, sizeof(hashSalt)); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); // always trickle our own transactions if (!fTrickleWait) { CWalletTx wtx; if (GetTransaction(inv.hash, wtx)) if (wtx.fFromMe) fTrickleWait = true; } if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // // Message: getdata // vector vGetData; int64 nNow = GetTime() * 1000000; CTxDB txdb("r"); while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(txdb, inv)) { printf("sending getdata: %s\n", inv.ToString().c_str()); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } mapAlreadyAskedFor[inv] = nNow; pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // int static FormatHashBlocks(void* pbuffer, unsigned int len) { unsigned char* pdata = (unsigned char*)pbuffer; unsigned int blocks = 1 + ((len + 8) / 64); unsigned char* pend = pdata + 64 * blocks; memset(pdata + len, 0, 64 * blocks - len); pdata[len] = 0x80; unsigned int bits = len * 8; pend[-1] = (bits >> 0) & 0xff; pend[-2] = (bits >> 8) & 0xff; pend[-3] = (bits >> 16) & 0xff; pend[-4] = (bits >> 24) & 0xff; return blocks; } static const unsigned int pSHA256InitState[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; void SHA256Transform(void* pstate, void* pinput, const void* pinit) { SHA256_CTX ctx; unsigned char data[64]; SHA256_Init(&ctx); for (int i = 0; i < 16; i++) ((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]); for (int i = 0; i < 8; i++) ctx.h[i] = ((uint32_t*)pinit)[i]; SHA256_Update(&ctx, data, sizeof(data)); for (int i = 0; i < 8; i++) ((uint32_t*)pstate)[i] = ctx.h[i]; } // // ScanHash scans nonces looking for a hash with at least some zero bits. // It operates on big endian data. Caller does the byte reversing. // All input buffers are 16-byte aligned. nNonce is usually preserved // between calls, but periodically or if nNonce is 0xffff0000 or above, // the block is rebuilt and nNonce starts over at zero. // unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone) { unsigned int& nNonce = *(unsigned int*)(pdata + 12); for (;;) { // Crypto++ SHA-256 // Hash pdata using pmidstate as the starting state into // preformatted buffer phash1, then hash phash1 into phash nNonce++; SHA256Transform(phash1, pdata, pmidstate); SHA256Transform(phash, phash1, pSHA256InitState); // Return the nonce if the hash has at least some zero bits, // caller will check if it has enough to reach the target if (((unsigned short*)phash)[14] == 0) return nNonce; // If nothing found after trying for a while, return -1 if ((nNonce & 0xffff) == 0) { nHashesDone = 0xffff+1; return -1; } } } // Some explaining would be appreciated class COrphan { public: CTransaction* ptx; set setDependsOn; double dPriority; COrphan(CTransaction* ptxIn) { ptx = ptxIn; dPriority = 0; } void print() const { printf("COrphan(hash=%s, dPriority=%.1f)\n", ptx->GetHash().ToString().substr(0,10).c_str(), dPriority); BOOST_FOREACH(uint256 hash, setDependsOn) printf(" setDependsOn %s\n", hash.ToString().substr(0,10).c_str()); } }; uint64 nLastBlockTx = 0; uint64 nLastBlockSize = 0; CBlock* CreateNewBlock(CReserveKey& reservekey) { CBlockIndex* pindexPrev = pindexBest; // Create new block auto_ptr pblock(new CBlock()); if (!pblock.get()) return NULL; // Create coinbase tx CTransaction txNew; txNew.vin.resize(1); txNew.vin[0].prevout.SetNull(); txNew.vout.resize(1); txNew.vout[0].scriptPubKey << reservekey.GetReservedKey() << OP_CHECKSIG; // Add our coinbase tx as first transaction pblock->vtx.push_back(txNew); // Collect memory pool transactions into the block int64 nFees = 0; CRITICAL_BLOCK(cs_main) CRITICAL_BLOCK(cs_mapTransactions) { CTxDB txdb("r"); // Priority order to process transactions list vOrphan; // list memory doesn't move map > mapDependers; multimap mapPriority; for (map::iterator mi = mapTransactions.begin(); mi != mapTransactions.end(); ++mi) { CTransaction& tx = (*mi).second; if (tx.IsCoinBase() || !tx.IsFinal()) continue; COrphan* porphan = NULL; double dPriority = 0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Read prev transaction CTransaction txPrev; CTxIndex txindex; if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex)) { // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); continue; } int64 nValueIn = txPrev.vout[txin.prevout.n].nValue; // Read block header int nConf = txindex.GetDepthInMainChain(); dPriority += (double)nValueIn * nConf; if (fDebug && GetBoolArg("-printpriority")) printf("priority nValueIn=%-12I64d nConf=%-5d dPriority=%-20.1f\n", nValueIn, nConf, dPriority); } // Priority is sum(valuein * age) / txsize dPriority /= ::GetSerializeSize(tx, SER_NETWORK); if (porphan) porphan->dPriority = dPriority; else mapPriority.insert(make_pair(-dPriority, &(*mi).second)); if (fDebug && GetBoolArg("-printpriority")) { printf("priority %-20.1f %s\n%s", dPriority, tx.GetHash().ToString().substr(0,10).c_str(), tx.ToString().c_str()); if (porphan) porphan->print(); printf("\n"); } } // Collect transactions into block map mapTestPool; uint64 nBlockSize = 1000; uint64 nBlockTx = 0; int nBlockSigOps = 100; while (!mapPriority.empty()) { // Take highest priority transaction off priority queue double dPriority = -(*mapPriority.begin()).first; CTransaction& tx = *(*mapPriority.begin()).second; mapPriority.erase(mapPriority.begin()); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK); if (nBlockSize + nTxSize >= MAX_BLOCK_SIZE_GEN) continue; // Legacy limits on sigOps: int nTxSigOps = tx.GetLegacySigOpCount(); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Transaction fee required depends on block size bool fAllowFree = (nBlockSize + nTxSize < 4000 || CTransaction::AllowFree(dPriority)); int64 nMinFee = tx.GetMinFee(nBlockSize, fAllowFree, GMF_BLOCK); // Connecting shouldn't fail due to dependency on other memory pool transactions // because we're already processing them in order of dependency map mapTestPoolTmp(mapTestPool); MapPrevTx mapInputs; bool fInvalid; if (!tx.FetchInputs(txdb, mapTestPoolTmp, false, true, mapInputs, fInvalid)) continue; int64 nTxFees = tx.GetValueIn(mapInputs)-tx.GetValueOut(); if (nTxFees < nMinFee) continue; nTxSigOps += tx.GetP2SHSigOpCount(mapInputs); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; if (!tx.ConnectInputs(mapInputs, mapTestPoolTmp, CDiskTxPos(1,1,1), pindexPrev, false, true)) continue; mapTestPoolTmp[tx.GetHash()] = CTxIndex(CDiskTxPos(1,1,1), tx.vout.size()); swap(mapTestPool, mapTestPoolTmp); // Added pblock->vtx.push_back(tx); nBlockSize += nTxSize; ++nBlockTx; nBlockSigOps += nTxSigOps; nFees += nTxFees; // Add transactions that depend on this one to the priority queue uint256 hash = tx.GetHash(); if (mapDependers.count(hash)) { BOOST_FOREACH(COrphan* porphan, mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) mapPriority.insert(make_pair(-porphan->dPriority, porphan->ptx)); } } } } nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; printf("CreateNewBlock(): total size %lu\n", nBlockSize); } pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees); // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); pblock->UpdateTime(pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock.get()); pblock->nNonce = 0; return pblock.release(); } void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; pblock->vtx[0].vin[0].scriptSig = (CScript() << pblock->nTime << CBigNum(nExtraNonce)) + COINBASE_FLAGS; assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1) { // // Prebuild hash buffers // struct { struct unnamed2 { int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; } block; unsigned char pchPadding0[64]; uint256 hash1; unsigned char pchPadding1[64]; } tmp; memset(&tmp, 0, sizeof(tmp)); tmp.block.nVersion = pblock->nVersion; tmp.block.hashPrevBlock = pblock->hashPrevBlock; tmp.block.hashMerkleRoot = pblock->hashMerkleRoot; tmp.block.nTime = pblock->nTime; tmp.block.nBits = pblock->nBits; tmp.block.nNonce = pblock->nNonce; FormatHashBlocks(&tmp.block, sizeof(tmp.block)); FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1)); // Byte swap all the input buffer for (int i = 0; i < sizeof(tmp)/4; i++) ((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]); // Precalc the first half of the first hash, which stays constant SHA256Transform(pmidstate, &tmp.block, pSHA256InitState); memcpy(pdata, &tmp.block, 128); memcpy(phash1, &tmp.hash1, 64); } bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey) { uint256 hash = pblock->GetHash(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); if (hash > hashTarget) return false; //// debug print printf("BitcoinMiner:\n"); printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str()); pblock->print(); printf("%s ", DateTimeStrFormat("%x %H:%M", GetTime()).c_str()); printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str()); // Found a solution CRITICAL_BLOCK(cs_main) { if (pblock->hashPrevBlock != hashBestChain) return error("BitcoinMiner : generated block is stale"); // Remove key from key pool reservekey.KeepKey(); // Track how many getdata requests this block gets CRITICAL_BLOCK(wallet.cs_wallet) wallet.mapRequestCount[pblock->GetHash()] = 0; // Process this block the same as if we had received it from another node if (!ProcessBlock(NULL, pblock)) return error("BitcoinMiner : ProcessBlock, block not accepted"); } return true; } void static ThreadBitcoinMiner(void* parg); void static BitcoinMiner(CWallet *pwallet) { printf("BitcoinMiner started\n"); SetThreadPriority(THREAD_PRIORITY_LOWEST); // Each thread has its own key and counter CReserveKey reservekey(pwallet); unsigned int nExtraNonce = 0; while (fGenerateBitcoins) { if (AffinityBugWorkaround(ThreadBitcoinMiner)) return; if (fShutdown) return; while (vNodes.empty() || IsInitialBlockDownload()) { Sleep(1000); if (fShutdown) return; if (!fGenerateBitcoins) return; } // // Create new block // unsigned int nTransactionsUpdatedLast = nTransactionsUpdated; CBlockIndex* pindexPrev = pindexBest; auto_ptr pblock(CreateNewBlock(reservekey)); if (!pblock.get()) return; IncrementExtraNonce(pblock.get(), pindexPrev, nExtraNonce); printf("Running BitcoinMiner with %d transactions in block\n", pblock->vtx.size()); // // Prebuild hash buffers // char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf); char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf); char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf); FormatHashBuffers(pblock.get(), pmidstate, pdata, phash1); unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4); unsigned int& nBlockBits = *(unsigned int*)(pdata + 64 + 8); unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12); // // Search // int64 nStart = GetTime(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); uint256 hashbuf[2]; uint256& hash = *alignup<16>(hashbuf); loop { unsigned int nHashesDone = 0; unsigned int nNonceFound; // Crypto++ SHA-256 nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1, (char*)&hash, nHashesDone); // Check if something found if (nNonceFound != -1) { for (int i = 0; i < sizeof(hash)/4; i++) ((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]); if (hash <= hashTarget) { // Found a solution pblock->nNonce = ByteReverse(nNonceFound); assert(hash == pblock->GetHash()); SetThreadPriority(THREAD_PRIORITY_NORMAL); CheckWork(pblock.get(), *pwalletMain, reservekey); SetThreadPriority(THREAD_PRIORITY_LOWEST); break; } } // Meter hashes/sec static int64 nHashCounter; if (nHPSTimerStart == 0) { nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; } else nHashCounter += nHashesDone; if (GetTimeMillis() - nHPSTimerStart > 4000) { static CCriticalSection cs; CRITICAL_BLOCK(cs) { if (GetTimeMillis() - nHPSTimerStart > 4000) { dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart); nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; string strStatus = strprintf(" %.0f khash/s", dHashesPerSec/1000.0); UIThreadCall(boost::bind(CalledSetStatusBar, strStatus, 0)); static int64 nLogTime; if (GetTime() - nLogTime > 30 * 60) { nLogTime = GetTime(); printf("%s ", DateTimeStrFormat("%x %H:%M", GetTime()).c_str()); printf("hashmeter %3d CPUs %6.0f khash/s\n", vnThreadsRunning[THREAD_MINER], dHashesPerSec/1000.0); } } } } // Check for stop or if block needs to be rebuilt if (fShutdown) return; if (!fGenerateBitcoins) return; if (fLimitProcessors && vnThreadsRunning[THREAD_MINER] > nLimitProcessors) return; if (vNodes.empty()) break; if (nBlockNonce >= 0xffff0000) break; if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60) break; if (pindexPrev != pindexBest) break; // Update nTime every few seconds pblock->UpdateTime(pindexPrev); nBlockTime = ByteReverse(pblock->nTime); if (fTestNet) { // Changing pblock->nTime can change work required on testnet: nBlockBits = ByteReverse(pblock->nBits); hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); } } } } void static ThreadBitcoinMiner(void* parg) { CWallet* pwallet = (CWallet*)parg; try { vnThreadsRunning[THREAD_MINER]++; BitcoinMiner(pwallet); vnThreadsRunning[THREAD_MINER]--; } catch (std::exception& e) { vnThreadsRunning[THREAD_MINER]--; PrintException(&e, "ThreadBitcoinMiner()"); } catch (...) { vnThreadsRunning[THREAD_MINER]--; PrintException(NULL, "ThreadBitcoinMiner()"); } UIThreadCall(boost::bind(CalledSetStatusBar, "", 0)); nHPSTimerStart = 0; if (vnThreadsRunning[THREAD_MINER] == 0) dHashesPerSec = 0; printf("ThreadBitcoinMiner exiting, %d threads remaining\n", vnThreadsRunning[THREAD_MINER]); } void GenerateBitcoins(bool fGenerate, CWallet* pwallet) { if (fGenerateBitcoins != fGenerate) { fGenerateBitcoins = fGenerate; WriteSetting("fGenerateBitcoins", fGenerateBitcoins); MainFrameRepaint(); } if (fGenerateBitcoins) { int nProcessors = boost::thread::hardware_concurrency(); printf("%d processors\n", nProcessors); if (nProcessors < 1) nProcessors = 1; if (fLimitProcessors && nProcessors > nLimitProcessors) nProcessors = nLimitProcessors; int nAddThreads = nProcessors - vnThreadsRunning[THREAD_MINER]; printf("Starting %d BitcoinMiner threads\n", nAddThreads); for (int i = 0; i < nAddThreads; i++) { if (!CreateThread(ThreadBitcoinMiner, pwallet)) printf("Error: CreateThread(ThreadBitcoinMiner) failed\n"); Sleep(10); } } }