// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "main.h" #include "addrman.h" #include "arith_uint256.h" #include "blockencodings.h" #include "chainparams.h" #include "checkpoints.h" #include "checkqueue.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "hash.h" #include "init.h" #include "merkleblock.h" #include "net.h" #include "netbase.h" #include "policy/fees.h" #include "policy/policy.h" #include "pow.h" #include "primitives/block.h" #include "primitives/transaction.h" #include "random.h" #include "script/script.h" #include "script/sigcache.h" #include "script/standard.h" #include "tinyformat.h" #include "txdb.h" #include "txmempool.h" #include "ui_interface.h" #include "undo.h" #include "util.h" #include "utilmoneystr.h" #include "utilstrencodings.h" #include "validationinterface.h" #include "versionbits.h" #include #include #include #include #include #include #include #include using namespace std; #if defined(NDEBUG) # error "Bitcoin cannot be compiled without assertions." #endif /** * Global state */ CCriticalSection cs_main; BlockMap mapBlockIndex; CChain chainActive; CBlockIndex *pindexBestHeader = NULL; int64_t nTimeBestReceived = 0; // Used only to inform the wallet of when we last received a block CWaitableCriticalSection csBestBlock; CConditionVariable cvBlockChange; int nScriptCheckThreads = 0; bool fImporting = false; bool fReindex = false; bool fTxIndex = false; bool fHavePruned = false; bool fPruneMode = false; bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG; bool fRequireStandard = true; bool fCheckBlockIndex = false; bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED; size_t nCoinCacheUsage = 5000 * 300; uint64_t nPruneTarget = 0; int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE; bool fEnableReplacement = DEFAULT_ENABLE_REPLACEMENT; CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE); CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE; CTxMemPool mempool(::minRelayTxFee); FeeFilterRounder filterRounder(::minRelayTxFee); struct IteratorComparator { template bool operator()(const I& a, const I& b) { return &(*a) < &(*b); } }; struct COrphanTx { CTransaction tx; NodeId fromPeer; int64_t nTimeExpire; }; map mapOrphanTransactions GUARDED_BY(cs_main); map::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(cs_main); void EraseOrphansFor(NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main); static void CheckBlockIndex(const Consensus::Params& consensusParams); /** Constant stuff for coinbase transactions we create: */ CScript COINBASE_FLAGS; const string strMessageMagic = "Bitcoin Signed Message:\n"; static const uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; // SHA256("main address relay")[0:8] // Internal stuff namespace { struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) const { // First sort by most total work, ... if (pa->nChainWork > pb->nChainWork) return false; if (pa->nChainWork < pb->nChainWork) return true; // ... then by earliest time received, ... if (pa->nSequenceId < pb->nSequenceId) return false; if (pa->nSequenceId > pb->nSequenceId) return true; // Use pointer address as tie breaker (should only happen with blocks // loaded from disk, as those all have id 0). if (pa < pb) return false; if (pa > pb) return true; // Identical blocks. return false; } }; CBlockIndex *pindexBestInvalid; /** * The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself and all ancestors) and * as good as our current tip or better. Entries may be failed, though, and pruning nodes may be * missing the data for the block. */ set setBlockIndexCandidates; /** Number of nodes with fSyncStarted. */ int nSyncStarted = 0; /** All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions. * Pruned nodes may have entries where B is missing data. */ multimap mapBlocksUnlinked; CCriticalSection cs_LastBlockFile; std::vector vinfoBlockFile; int nLastBlockFile = 0; /** Global flag to indicate we should check to see if there are * block/undo files that should be deleted. Set on startup * or if we allocate more file space when we're in prune mode */ bool fCheckForPruning = false; /** * Every received block is assigned a unique and increasing identifier, so we * know which one to give priority in case of a fork. */ CCriticalSection cs_nBlockSequenceId; /** Blocks loaded from disk are assigned id 0, so start the counter at 1. */ int32_t nBlockSequenceId = 1; /** Decreasing counter (used by subsequent preciousblock calls). */ int32_t nBlockReverseSequenceId = -1; /** chainwork for the last block that preciousblock has been applied to. */ arith_uint256 nLastPreciousChainwork = 0; /** * Sources of received blocks, saved to be able to send them reject * messages or ban them when processing happens afterwards. Protected by * cs_main. */ map mapBlockSource; /** * Filter for transactions that were recently rejected by * AcceptToMemoryPool. These are not rerequested until the chain tip * changes, at which point the entire filter is reset. Protected by * cs_main. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 * peers, half of which relay a tx we don't accept, that might be a 50x * bandwidth increase. A flooding attacker attempting to roll-over the * filter using minimum-sized, 60byte, transactions might manage to send * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a * two minute window to send invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this * filter. * * Memory used: 1.3 MB */ std::unique_ptr recentRejects; uint256 hashRecentRejectsChainTip; /** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */ struct QueuedBlock { uint256 hash; CBlockIndex* pindex; //!< Optional. bool fValidatedHeaders; //!< Whether this block has validated headers at the time of request. std::unique_ptr partialBlock; //!< Optional, used for CMPCTBLOCK downloads }; map::iterator> > mapBlocksInFlight; /** Stack of nodes which we have set to announce using compact blocks */ list lNodesAnnouncingHeaderAndIDs; /** Number of preferable block download peers. */ int nPreferredDownload = 0; /** Dirty block index entries. */ set setDirtyBlockIndex; /** Dirty block file entries. */ set setDirtyFileInfo; /** Number of peers from which we're downloading blocks. */ int nPeersWithValidatedDownloads = 0; /** Relay map, protected by cs_main. */ typedef std::map> MapRelay; MapRelay mapRelay; /** Expiration-time ordered list of (expire time, relay map entry) pairs, protected by cs_main). */ std::deque> vRelayExpiration; } // anon namespace ////////////////////////////////////////////////////////////////////////////// // // Registration of network node signals. // namespace { struct CBlockReject { unsigned char chRejectCode; string strRejectReason; uint256 hashBlock; }; /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The peer's address const CService address; //! Whether we have a fully established connection. bool fCurrentlyConnected; //! Accumulated misbehaviour score for this peer. int nMisbehavior; //! Whether this peer should be disconnected and banned (unless whitelisted). bool fShouldBan; //! String name of this peer (debugging/logging purposes). const std::string name; //! List of asynchronously-determined block rejections to notify this peer about. std::vector rejects; //! The best known block we know this peer has announced. CBlockIndex *pindexBestKnownBlock; //! The hash of the last unknown block this peer has announced. uint256 hashLastUnknownBlock; //! The last full block we both have. CBlockIndex *pindexLastCommonBlock; //! The best header we have sent our peer. CBlockIndex *pindexBestHeaderSent; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders; //! Whether we've started headers synchronization with this peer. bool fSyncStarted; //! Since when we're stalling block download progress (in microseconds), or 0. int64_t nStallingSince; list vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty. int64_t nDownloadingSince; int nBlocksInFlight; int nBlocksInFlightValidHeaders; //! Whether we consider this a preferred download peer. bool fPreferredDownload; //! Whether this peer wants invs or headers (when possible) for block announcements. bool fPreferHeaders; //! Whether this peer wants invs or cmpctblocks (when possible) for block announcements. bool fPreferHeaderAndIDs; /** * Whether this peer will send us cmpctblocks if we request them. * This is not used to gate request logic, as we really only care about fSupportsDesiredCmpctVersion, * but is used as a flag to "lock in" the version of compact blocks (fWantsCmpctWitness) we send. */ bool fProvidesHeaderAndIDs; //! Whether this peer can give us witnesses bool fHaveWitness; //! Whether this peer wants witnesses in cmpctblocks/blocktxns bool fWantsCmpctWitness; /** * If we've announced NODE_WITNESS to this peer: whether the peer sends witnesses in cmpctblocks/blocktxns, * otherwise: whether this peer sends non-witnesses in cmpctblocks/blocktxns. */ bool fSupportsDesiredCmpctVersion; CNodeState(CAddress addrIn, std::string addrNameIn) : address(addrIn), name(addrNameIn) { fCurrentlyConnected = false; nMisbehavior = 0; fShouldBan = false; pindexBestKnownBlock = NULL; hashLastUnknownBlock.SetNull(); pindexLastCommonBlock = NULL; pindexBestHeaderSent = NULL; nUnconnectingHeaders = 0; fSyncStarted = false; nStallingSince = 0; nDownloadingSince = 0; nBlocksInFlight = 0; nBlocksInFlightValidHeaders = 0; fPreferredDownload = false; fPreferHeaders = false; fPreferHeaderAndIDs = false; fProvidesHeaderAndIDs = false; fHaveWitness = false; fWantsCmpctWitness = false; fSupportsDesiredCmpctVersion = false; } }; /** Map maintaining per-node state. Requires cs_main. */ map mapNodeState; // Requires cs_main. CNodeState *State(NodeId pnode) { map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) return NULL; return &it->second; } void UpdatePreferredDownload(CNode* node, CNodeState* state) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient; nPreferredDownload += state->fPreferredDownload; } void PushNodeVersion(CNode *pnode, CConnman& connman, int64_t nTime) { ServiceFlags nLocalNodeServices = pnode->GetLocalServices(); uint64_t nonce = pnode->GetLocalNonce(); int nNodeStartingHeight = pnode->GetMyStartingHeight(); NodeId nodeid = pnode->GetId(); CAddress addr = pnode->addr; CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = CAddress(CService(), nLocalNodeServices); connman.PushMessageWithVersion(pnode, INIT_PROTO_VERSION, NetMsgType::VERSION, PROTOCOL_VERSION, (uint64_t)nLocalNodeServices, nTime, addrYou, addrMe, nonce, strSubVersion, nNodeStartingHeight, ::fRelayTxes); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), nodeid); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid); } void InitializeNode(CNode *pnode, CConnman& connman) { CAddress addr = pnode->addr; std::string addrName = pnode->addrName; NodeId nodeid = pnode->GetId(); { LOCK(cs_main); mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, std::move(addrName))); } if(!pnode->fInbound) PushNodeVersion(pnode, connman, GetTime()); } void FinalizeNode(NodeId nodeid, bool& fUpdateConnectionTime) { fUpdateConnectionTime = false; LOCK(cs_main); CNodeState *state = State(nodeid); if (state->fSyncStarted) nSyncStarted--; if (state->nMisbehavior == 0 && state->fCurrentlyConnected) { fUpdateConnectionTime = true; } BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.hash); } EraseOrphansFor(nodeid); nPreferredDownload -= state->fPreferredDownload; nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0); assert(nPeersWithValidatedDownloads >= 0); mapNodeState.erase(nodeid); if (mapNodeState.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(nPreferredDownload == 0); assert(nPeersWithValidatedDownloads == 0); } } // Requires cs_main. // Returns a bool indicating whether we requested this block. // Also used if a block was /not/ received and timed out or started with another peer bool MarkBlockAsReceived(const uint256& hash) { map::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders; if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) { // Last validated block on the queue was received. nPeersWithValidatedDownloads--; } if (state->vBlocksInFlight.begin() == itInFlight->second.second) { // First block on the queue was received, update the start download time for the next one state->nDownloadingSince = std::max(state->nDownloadingSince, GetTimeMicros()); } state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->nStallingSince = 0; mapBlocksInFlight.erase(itInFlight); return true; } return false; } // Requires cs_main. // returns false, still setting pit, if the block was already in flight from the same peer // pit will only be valid as long as the same cs_main lock is being held bool MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, const Consensus::Params& consensusParams, CBlockIndex *pindex = NULL, list::iterator **pit = NULL) { CNodeState *state = State(nodeid); assert(state != NULL); // Short-circuit most stuff in case its from the same node map::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { *pit = &itInFlight->second.second; return false; } // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); list::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), {hash, pindex, pindex != NULL, std::unique_ptr(pit ? new PartiallyDownloadedBlock(&mempool) : NULL)}); state->nBlocksInFlight++; state->nBlocksInFlightValidHeaders += it->fValidatedHeaders; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->nDownloadingSince = GetTimeMicros(); } if (state->nBlocksInFlightValidHeaders == 1 && pindex != NULL) { nPeersWithValidatedDownloads++; } itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it))).first; if (pit) *pit = &itInFlight->second.second; return true; } /** Check whether the last unknown block a peer advertised is not yet known. */ void ProcessBlockAvailability(NodeId nodeid) { CNodeState *state = State(nodeid); assert(state != NULL); if (!state->hashLastUnknownBlock.IsNull()) { BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock); if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) { if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork) state->pindexBestKnownBlock = itOld->second; state->hashLastUnknownBlock.SetNull(); } } } /** Update tracking information about which blocks a peer is assumed to have. */ void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) { CNodeState *state = State(nodeid); assert(state != NULL); ProcessBlockAvailability(nodeid); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end() && it->second->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork) state->pindexBestKnownBlock = it->second; } else { // An unknown block was announced; just assume that the latest one is the best one. state->hashLastUnknownBlock = hash; } } void MaybeSetPeerAsAnnouncingHeaderAndIDs(const CNodeState* nodestate, CNode* pfrom, CConnman& connman) { if (!nodestate->fSupportsDesiredCmpctVersion) { // Never ask from peers who can't provide witnesses. return; } if (nodestate->fProvidesHeaderAndIDs) { for (std::list::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == pfrom->GetId()) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return; } } bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = (pfrom->GetLocalServices() & NODE_WITNESS) ? 2 : 1; if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. bool found = connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [&connman, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion](CNode* pnodeStop){ connman.PushMessage(pnodeStop, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion); return true; }); if(found) lNodesAnnouncingHeaderAndIDs.pop_front(); } fAnnounceUsingCMPCTBLOCK = true; connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion); lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); } } // Requires cs_main bool CanDirectFetch(const Consensus::Params &consensusParams) { return chainActive.Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20; } // Requires cs_main bool PeerHasHeader(CNodeState *state, CBlockIndex *pindex) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) return true; if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) return true; return false; } /** Find the last common ancestor two blocks have. * Both pa and pb must be non-NULL. */ CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) { if (pa->nHeight > pb->nHeight) { pa = pa->GetAncestor(pb->nHeight); } else if (pb->nHeight > pa->nHeight) { pb = pb->GetAncestor(pa->nHeight); } while (pa != pb && pa && pb) { pa = pa->pprev; pb = pb->pprev; } // Eventually all chain branches meet at the genesis block. assert(pa == pb); return pa; } /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has * at most count entries. */ void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector& vBlocks, NodeId& nodeStaller, const Consensus::Params& consensusParams) { if (count == 0) return; vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != NULL); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == NULL) { // Bootstrap quickly by guessing a parent of our best tip is the forking point. // Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor // of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) return; std::vector vToFetch; CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to // download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive // as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding the ones that // are not yet downloaded and not in flight to vBlocks. In the mean time, update // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's // already part of our chain (and therefore don't need it even if pruned). BOOST_FOREACH(CBlockIndex* pindex, vToFetch) { if (!pindex->IsValid(BLOCK_VALID_TREE)) { // We consider the chain that this peer is on invalid. return; } if (!State(nodeid)->fHaveWitness && IsWitnessEnabled(pindex->pprev, consensusParams)) { // We wouldn't download this block or its descendants from this peer. return; } if (pindex->nStatus & BLOCK_HAVE_DATA || chainActive.Contains(pindex)) { if (pindex->nChainTx) state->pindexLastCommonBlock = pindex; } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // anon namespace bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == NULL) return false; stats.nMisbehavior = state->nMisbehavior; stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) { if (queue.pindex) stats.vHeightInFlight.push_back(queue.pindex->nHeight); } return true; } void RegisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.ProcessMessages.connect(&ProcessMessages); nodeSignals.SendMessages.connect(&SendMessages); nodeSignals.InitializeNode.connect(&InitializeNode); nodeSignals.FinalizeNode.connect(&FinalizeNode); } void UnregisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.ProcessMessages.disconnect(&ProcessMessages); nodeSignals.SendMessages.disconnect(&SendMessages); nodeSignals.InitializeNode.disconnect(&InitializeNode); nodeSignals.FinalizeNode.disconnect(&FinalizeNode); } CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator) { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, locator.vHave) { BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (chain.Contains(pindex)) return pindex; if (pindex->GetAncestor(chain.Height()) == chain.Tip()) { return chain.Tip(); } } } return chain.Genesis(); } CCoinsViewCache *pcoinsTip = NULL; CBlockTreeDB *pblocktree = NULL; enum FlushStateMode { FLUSH_STATE_NONE, FLUSH_STATE_IF_NEEDED, FLUSH_STATE_PERIODIC, FLUSH_STATE_ALWAYS }; // See definition for documentation bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode); ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // bool AddOrphanTx(const CTransaction& tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 100 orphans, each of which is at most 99,999 bytes big is // at most 10 megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = GetTransactionWeight(tx); if (sz >= MAX_STANDARD_TX_WEIGHT) { LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString()); return false; } auto ret = mapOrphanTransactions.emplace(hash, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME}); assert(ret.second); BOOST_FOREACH(const CTxIn& txin, tx.vin) { mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first); } LogPrint("mempool", "stored orphan tx %s (mapsz %u outsz %u)\n", hash.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } int static EraseOrphanTx(uint256 hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { map::iterator it = mapOrphanTransactions.find(hash); if (it == mapOrphanTransactions.end()) return 0; BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin) { auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itPrev == mapOrphanTransactionsByPrev.end()) continue; itPrev->second.erase(it); if (itPrev->second.empty()) mapOrphanTransactionsByPrev.erase(itPrev); } mapOrphanTransactions.erase(it); return 1; } void EraseOrphansFor(NodeId peer) { int nErased = 0; map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { map::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid if (maybeErase->second.fromPeer == peer) { nErased += EraseOrphanTx(maybeErase->second.tx.GetHash()); } } if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer); } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { map::iterator maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseOrphanTx(maybeErase->second.tx.GetHash()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx due to expiration\n", nErased); } while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = GetRandHash(); map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) { if (tx.nLockTime == 0) return true; if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime)) return true; for (const auto& txin : tx.vin) { if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL)) return false; } return true; } bool CheckFinalTx(const CTransaction &tx, int flags) { AssertLockHeld(cs_main); // By convention a negative value for flags indicates that the // current network-enforced consensus rules should be used. In // a future soft-fork scenario that would mean checking which // rules would be enforced for the next block and setting the // appropriate flags. At the present time no soft-forks are // scheduled, so no flags are set. flags = std::max(flags, 0); // CheckFinalTx() uses chainActive.Height()+1 to evaluate // nLockTime because when IsFinalTx() is called within // CBlock::AcceptBlock(), the height of the block *being* // evaluated is what is used. Thus if we want to know if a // transaction can be part of the *next* block, we need to call // IsFinalTx() with one more than chainActive.Height(). const int nBlockHeight = chainActive.Height() + 1; // BIP113 will require that time-locked transactions have nLockTime set to // less than the median time of the previous block they're contained in. // When the next block is created its previous block will be the current // chain tip, so we use that to calculate the median time passed to // IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set. const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST) ? chainActive.Tip()->GetMedianTimePast() : GetAdjustedTime(); return IsFinalTx(tx, nBlockHeight, nBlockTime); } /** * Calculates the block height and previous block's median time past at * which the transaction will be considered final in the context of BIP 68. * Also removes from the vector of input heights any entries which did not * correspond to sequence locked inputs as they do not affect the calculation. */ static std::pair CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector* prevHeights, const CBlockIndex& block) { assert(prevHeights->size() == tx.vin.size()); // Will be set to the equivalent height- and time-based nLockTime // values that would be necessary to satisfy all relative lock- // time constraints given our view of block chain history. // The semantics of nLockTime are the last invalid height/time, so // use -1 to have the effect of any height or time being valid. int nMinHeight = -1; int64_t nMinTime = -1; // tx.nVersion is signed integer so requires cast to unsigned otherwise // we would be doing a signed comparison and half the range of nVersion // wouldn't support BIP 68. bool fEnforceBIP68 = static_cast(tx.nVersion) >= 2 && flags & LOCKTIME_VERIFY_SEQUENCE; // Do not enforce sequence numbers as a relative lock time // unless we have been instructed to if (!fEnforceBIP68) { return std::make_pair(nMinHeight, nMinTime); } for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn& txin = tx.vin[txinIndex]; // Sequence numbers with the most significant bit set are not // treated as relative lock-times, nor are they given any // consensus-enforced meaning at this point. if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) { // The height of this input is not relevant for sequence locks (*prevHeights)[txinIndex] = 0; continue; } int nCoinHeight = (*prevHeights)[txinIndex]; if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) { int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight-1, 0))->GetMedianTimePast(); // NOTE: Subtract 1 to maintain nLockTime semantics // BIP 68 relative lock times have the semantics of calculating // the first block or time at which the transaction would be // valid. When calculating the effective block time or height // for the entire transaction, we switch to using the // semantics of nLockTime which is the last invalid block // time or height. Thus we subtract 1 from the calculated // time or height. // Time-based relative lock-times are measured from the // smallest allowed timestamp of the block containing the // txout being spent, which is the median time past of the // block prior. nMinTime = std::max(nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1); } else { nMinHeight = std::max(nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1); } } return std::make_pair(nMinHeight, nMinTime); } static bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair lockPair) { assert(block.pprev); int64_t nBlockTime = block.pprev->GetMedianTimePast(); if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime) return false; return true; } bool SequenceLocks(const CTransaction &tx, int flags, std::vector* prevHeights, const CBlockIndex& block) { return EvaluateSequenceLocks(block, CalculateSequenceLocks(tx, flags, prevHeights, block)); } bool TestLockPointValidity(const LockPoints* lp) { AssertLockHeld(cs_main); assert(lp); // If there are relative lock times then the maxInputBlock will be set // If there are no relative lock times, the LockPoints don't depend on the chain if (lp->maxInputBlock) { // Check whether chainActive is an extension of the block at which the LockPoints // calculation was valid. If not LockPoints are no longer valid if (!chainActive.Contains(lp->maxInputBlock)) { return false; } } // LockPoints still valid return true; } bool CheckSequenceLocks(const CTransaction &tx, int flags, LockPoints* lp, bool useExistingLockPoints) { AssertLockHeld(cs_main); AssertLockHeld(mempool.cs); CBlockIndex* tip = chainActive.Tip(); CBlockIndex index; index.pprev = tip; // CheckSequenceLocks() uses chainActive.Height()+1 to evaluate // height based locks because when SequenceLocks() is called within // ConnectBlock(), the height of the block *being* // evaluated is what is used. // Thus if we want to know if a transaction can be part of the // *next* block, we need to use one more than chainActive.Height() index.nHeight = tip->nHeight + 1; std::pair lockPair; if (useExistingLockPoints) { assert(lp); lockPair.first = lp->height; lockPair.second = lp->time; } else { // pcoinsTip contains the UTXO set for chainActive.Tip() CCoinsViewMemPool viewMemPool(pcoinsTip, mempool); std::vector prevheights; prevheights.resize(tx.vin.size()); for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn& txin = tx.vin[txinIndex]; CCoins coins; if (!viewMemPool.GetCoins(txin.prevout.hash, coins)) { return error("%s: Missing input", __func__); } if (coins.nHeight == MEMPOOL_HEIGHT) { // Assume all mempool transaction confirm in the next block prevheights[txinIndex] = tip->nHeight + 1; } else { prevheights[txinIndex] = coins.nHeight; } } lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index); if (lp) { lp->height = lockPair.first; lp->time = lockPair.second; // Also store the hash of the block with the highest height of // all the blocks which have sequence locked prevouts. // This hash needs to still be on the chain // for these LockPoint calculations to be valid // Note: It is impossible to correctly calculate a maxInputBlock // if any of the sequence locked inputs depend on unconfirmed txs, // except in the special case where the relative lock time/height // is 0, which is equivalent to no sequence lock. Since we assume // input height of tip+1 for mempool txs and test the resulting // lockPair from CalculateSequenceLocks against tip+1. We know // EvaluateSequenceLocks will fail if there was a non-zero sequence // lock on a mempool input, so we can use the return value of // CheckSequenceLocks to indicate the LockPoints validity int maxInputHeight = 0; BOOST_FOREACH(int height, prevheights) { // Can ignore mempool inputs since we'll fail if they had non-zero locks if (height != tip->nHeight+1) { maxInputHeight = std::max(maxInputHeight, height); } } lp->maxInputBlock = tip->GetAncestor(maxInputHeight); } } return EvaluateSequenceLocks(index, lockPair); } unsigned int GetLegacySigOpCount(const CTransaction& tx) { unsigned int nSigOps = 0; for (const auto& txin : tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } for (const auto& txout : tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs) { if (tx.IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig); } return nSigOps; } int64_t GetTransactionSigOpCost(const CTransaction& tx, const CCoinsViewCache& inputs, int flags) { int64_t nSigOps = GetLegacySigOpCount(tx) * WITNESS_SCALE_FACTOR; if (tx.IsCoinBase()) return nSigOps; if (flags & SCRIPT_VERIFY_P2SH) { nSigOps += GetP2SHSigOpCount(tx, inputs) * WITNESS_SCALE_FACTOR; } for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]); nSigOps += CountWitnessSigOps(tx.vin[i].scriptSig, prevout.scriptPubKey, i < tx.wit.vtxinwit.size() ? &tx.wit.vtxinwit[i].scriptWitness : NULL, flags); } return nSigOps; } bool CheckTransaction(const CTransaction& tx, CValidationState &state) { // Basic checks that don't depend on any context if (tx.vin.empty()) return state.DoS(10, false, REJECT_INVALID, "bad-txns-vin-empty"); if (tx.vout.empty()) return state.DoS(10, false, REJECT_INVALID, "bad-txns-vout-empty"); // Size limits (this doesn't take the witness into account, as that hasn't been checked for malleability) if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) > MAX_BLOCK_BASE_SIZE) return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize"); // Check for negative or overflow output values CAmount nValueOut = 0; for (const auto& txout : tx.vout) { if (txout.nValue < 0) return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-negative"); if (txout.nValue > MAX_MONEY) return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-toolarge"); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return state.DoS(100, false, REJECT_INVALID, "bad-txns-txouttotal-toolarge"); } // Check for duplicate inputs set vInOutPoints; for (const auto& txin : tx.vin) { if (vInOutPoints.count(txin.prevout)) return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-duplicate"); vInOutPoints.insert(txin.prevout); } if (tx.IsCoinBase()) { if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) return state.DoS(100, false, REJECT_INVALID, "bad-cb-length"); } else { for (const auto& txin : tx.vin) if (txin.prevout.IsNull()) return state.DoS(10, false, REJECT_INVALID, "bad-txns-prevout-null"); } return true; } void LimitMempoolSize(CTxMemPool& pool, size_t limit, unsigned long age) { int expired = pool.Expire(GetTime() - age); if (expired != 0) LogPrint("mempool", "Expired %i transactions from the memory pool\n", expired); std::vector vNoSpendsRemaining; pool.TrimToSize(limit, &vNoSpendsRemaining); BOOST_FOREACH(const uint256& removed, vNoSpendsRemaining) pcoinsTip->Uncache(removed); } /** Convert CValidationState to a human-readable message for logging */ std::string FormatStateMessage(const CValidationState &state) { return strprintf("%s%s (code %i)", state.GetRejectReason(), state.GetDebugMessage().empty() ? "" : ", "+state.GetDebugMessage(), state.GetRejectCode()); } bool AcceptToMemoryPoolWorker(CTxMemPool& pool, CValidationState& state, const CTransaction& tx, bool fLimitFree, bool* pfMissingInputs, int64_t nAcceptTime, bool fOverrideMempoolLimit, const CAmount& nAbsurdFee, std::vector& vHashTxnToUncache) { const uint256 hash = tx.GetHash(); AssertLockHeld(cs_main); if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction(tx, state)) return false; // state filled in by CheckTransaction // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return state.DoS(100, false, REJECT_INVALID, "coinbase"); // Don't relay version 2 transactions until CSV is active, and we can be // sure that such transactions will be mined (unless we're on // -testnet/-regtest). const CChainParams& chainparams = Params(); if (fRequireStandard && tx.nVersion >= 2 && VersionBitsTipState(chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV) != THRESHOLD_ACTIVE) { return state.DoS(0, false, REJECT_NONSTANDARD, "premature-version2-tx"); } // Reject transactions with witness before segregated witness activates (override with -prematurewitness) bool witnessEnabled = IsWitnessEnabled(chainActive.Tip(), Params().GetConsensus()); if (!GetBoolArg("-prematurewitness",false) && !tx.wit.IsNull() && !witnessEnabled) { return state.DoS(0, false, REJECT_NONSTANDARD, "no-witness-yet", true); } // Rather not work on nonstandard transactions (unless -testnet/-regtest) string reason; if (fRequireStandard && !IsStandardTx(tx, reason, witnessEnabled)) return state.DoS(0, false, REJECT_NONSTANDARD, reason); // Only accept nLockTime-using transactions that can be mined in the next // block; we don't want our mempool filled up with transactions that can't // be mined yet. if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS)) return state.DoS(0, false, REJECT_NONSTANDARD, "non-final"); // is it already in the memory pool? if (pool.exists(hash)) return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-in-mempool"); // Check for conflicts with in-memory transactions set setConflicts; { LOCK(pool.cs); // protect pool.mapNextTx BOOST_FOREACH(const CTxIn &txin, tx.vin) { auto itConflicting = pool.mapNextTx.find(txin.prevout); if (itConflicting != pool.mapNextTx.end()) { const CTransaction *ptxConflicting = itConflicting->second; if (!setConflicts.count(ptxConflicting->GetHash())) { // Allow opt-out of transaction replacement by setting // nSequence >= maxint-1 on all inputs. // // maxint-1 is picked to still allow use of nLockTime by // non-replaceable transactions. All inputs rather than just one // is for the sake of multi-party protocols, where we don't // want a single party to be able to disable replacement. // // The opt-out ignores descendants as anyone relying on // first-seen mempool behavior should be checking all // unconfirmed ancestors anyway; doing otherwise is hopelessly // insecure. bool fReplacementOptOut = true; if (fEnableReplacement) { BOOST_FOREACH(const CTxIn &_txin, ptxConflicting->vin) { if (_txin.nSequence < std::numeric_limits::max()-1) { fReplacementOptOut = false; break; } } } if (fReplacementOptOut) return state.Invalid(false, REJECT_CONFLICT, "txn-mempool-conflict"); setConflicts.insert(ptxConflicting->GetHash()); } } } } { CCoinsView dummy; CCoinsViewCache view(&dummy); CAmount nValueIn = 0; LockPoints lp; { LOCK(pool.cs); CCoinsViewMemPool viewMemPool(pcoinsTip, pool); view.SetBackend(viewMemPool); // do we already have it? bool fHadTxInCache = pcoinsTip->HaveCoinsInCache(hash); if (view.HaveCoins(hash)) { if (!fHadTxInCache) vHashTxnToUncache.push_back(hash); return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-known"); } // do all inputs exist? // Note that this does not check for the presence of actual outputs (see the next check for that), // and only helps with filling in pfMissingInputs (to determine missing vs spent). BOOST_FOREACH(const CTxIn txin, tx.vin) { if (!pcoinsTip->HaveCoinsInCache(txin.prevout.hash)) vHashTxnToUncache.push_back(txin.prevout.hash); if (!view.HaveCoins(txin.prevout.hash)) { if (pfMissingInputs) *pfMissingInputs = true; return false; // fMissingInputs and !state.IsInvalid() is used to detect this condition, don't set state.Invalid() } } // are the actual inputs available? if (!view.HaveInputs(tx)) return state.Invalid(false, REJECT_DUPLICATE, "bad-txns-inputs-spent"); // Bring the best block into scope view.GetBestBlock(); nValueIn = view.GetValueIn(tx); // we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool view.SetBackend(dummy); // Only accept BIP68 sequence locked transactions that can be mined in the next // block; we don't want our mempool filled up with transactions that can't // be mined yet. // Must keep pool.cs for this unless we change CheckSequenceLocks to take a // CoinsViewCache instead of create its own if (!CheckSequenceLocks(tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp)) return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final"); } // Check for non-standard pay-to-script-hash in inputs if (fRequireStandard && !AreInputsStandard(tx, view)) return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs"); // Check for non-standard witness in P2WSH if (!tx.wit.IsNull() && fRequireStandard && !IsWitnessStandard(tx, view)) return state.DoS(0, false, REJECT_NONSTANDARD, "bad-witness-nonstandard", true); int64_t nSigOpsCost = GetTransactionSigOpCost(tx, view, STANDARD_SCRIPT_VERIFY_FLAGS); CAmount nValueOut = tx.GetValueOut(); CAmount nFees = nValueIn-nValueOut; // nModifiedFees includes any fee deltas from PrioritiseTransaction CAmount nModifiedFees = nFees; double nPriorityDummy = 0; pool.ApplyDeltas(hash, nPriorityDummy, nModifiedFees); CAmount inChainInputValue; double dPriority = view.GetPriority(tx, chainActive.Height(), inChainInputValue); // Keep track of transactions that spend a coinbase, which we re-scan // during reorgs to ensure COINBASE_MATURITY is still met. bool fSpendsCoinbase = false; BOOST_FOREACH(const CTxIn &txin, tx.vin) { const CCoins *coins = view.AccessCoins(txin.prevout.hash); if (coins->IsCoinBase()) { fSpendsCoinbase = true; break; } } CTxMemPoolEntry entry(tx, nFees, nAcceptTime, dPriority, chainActive.Height(), pool.HasNoInputsOf(tx), inChainInputValue, fSpendsCoinbase, nSigOpsCost, lp); unsigned int nSize = entry.GetTxSize(); // Check that the transaction doesn't have an excessive number of // sigops, making it impossible to mine. Since the coinbase transaction // itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than // MAX_BLOCK_SIGOPS; we still consider this an invalid rather than // merely non-standard transaction. if (nSigOpsCost > MAX_STANDARD_TX_SIGOPS_COST) return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false, strprintf("%d", nSigOpsCost)); CAmount mempoolRejectFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFee(nSize); if (mempoolRejectFee > 0 && nModifiedFees < mempoolRejectFee) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nFees, mempoolRejectFee)); } else if (GetBoolArg("-relaypriority", DEFAULT_RELAYPRIORITY) && nModifiedFees < ::minRelayTxFee.GetFee(nSize) && !AllowFree(entry.GetPriority(chainActive.Height() + 1))) { // Require that free transactions have sufficient priority to be mined in the next block. return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient priority"); } // Continuously rate-limit free (really, very-low-fee) transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (fLimitFree && nModifiedFees < ::minRelayTxFee.GetFee(nSize)) { static CCriticalSection csFreeLimiter; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); LOCK(csFreeLimiter); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount + nSize >= GetArg("-limitfreerelay", DEFAULT_LIMITFREERELAY) * 10 * 1000) return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "rate limited free transaction"); LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } if (nAbsurdFee && nFees > nAbsurdFee) return state.Invalid(false, REJECT_HIGHFEE, "absurdly-high-fee", strprintf("%d > %d", nFees, nAbsurdFee)); // Calculate in-mempool ancestors, up to a limit. CTxMemPool::setEntries setAncestors; size_t nLimitAncestors = GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT); size_t nLimitAncestorSize = GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000; size_t nLimitDescendants = GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT); size_t nLimitDescendantSize = GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000; std::string errString; if (!pool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) { return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString); } // A transaction that spends outputs that would be replaced by it is invalid. Now // that we have the set of all ancestors we can detect this // pathological case by making sure setConflicts and setAncestors don't // intersect. BOOST_FOREACH(CTxMemPool::txiter ancestorIt, setAncestors) { const uint256 &hashAncestor = ancestorIt->GetTx().GetHash(); if (setConflicts.count(hashAncestor)) { return state.DoS(10, false, REJECT_INVALID, "bad-txns-spends-conflicting-tx", false, strprintf("%s spends conflicting transaction %s", hash.ToString(), hashAncestor.ToString())); } } // Check if it's economically rational to mine this transaction rather // than the ones it replaces. CAmount nConflictingFees = 0; size_t nConflictingSize = 0; uint64_t nConflictingCount = 0; CTxMemPool::setEntries allConflicting; // If we don't hold the lock allConflicting might be incomplete; the // subsequent RemoveStaged() and addUnchecked() calls don't guarantee // mempool consistency for us. LOCK(pool.cs); if (setConflicts.size()) { CFeeRate newFeeRate(nModifiedFees, nSize); set setConflictsParents; const int maxDescendantsToVisit = 100; CTxMemPool::setEntries setIterConflicting; BOOST_FOREACH(const uint256 &hashConflicting, setConflicts) { CTxMemPool::txiter mi = pool.mapTx.find(hashConflicting); if (mi == pool.mapTx.end()) continue; // Save these to avoid repeated lookups setIterConflicting.insert(mi); // Don't allow the replacement to reduce the feerate of the // mempool. // // We usually don't want to accept replacements with lower // feerates than what they replaced as that would lower the // feerate of the next block. Requiring that the feerate always // be increased is also an easy-to-reason about way to prevent // DoS attacks via replacements. // // The mining code doesn't (currently) take children into // account (CPFP) so we only consider the feerates of // transactions being directly replaced, not their indirect // descendants. While that does mean high feerate children are // ignored when deciding whether or not to replace, we do // require the replacement to pay more overall fees too, // mitigating most cases. CFeeRate oldFeeRate(mi->GetModifiedFee(), mi->GetTxSize()); if (newFeeRate <= oldFeeRate) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient fee", false, strprintf("rejecting replacement %s; new feerate %s <= old feerate %s", hash.ToString(), newFeeRate.ToString(), oldFeeRate.ToString())); } BOOST_FOREACH(const CTxIn &txin, mi->GetTx().vin) { setConflictsParents.insert(txin.prevout.hash); } nConflictingCount += mi->GetCountWithDescendants(); } // This potentially overestimates the number of actual descendants // but we just want to be conservative to avoid doing too much // work. if (nConflictingCount <= maxDescendantsToVisit) { // If not too many to replace, then calculate the set of // transactions that would have to be evicted BOOST_FOREACH(CTxMemPool::txiter it, setIterConflicting) { pool.CalculateDescendants(it, allConflicting); } BOOST_FOREACH(CTxMemPool::txiter it, allConflicting) { nConflictingFees += it->GetModifiedFee(); nConflictingSize += it->GetTxSize(); } } else { return state.DoS(0, false, REJECT_NONSTANDARD, "too many potential replacements", false, strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n", hash.ToString(), nConflictingCount, maxDescendantsToVisit)); } for (unsigned int j = 0; j < tx.vin.size(); j++) { // We don't want to accept replacements that require low // feerate junk to be mined first. Ideally we'd keep track of // the ancestor feerates and make the decision based on that, // but for now requiring all new inputs to be confirmed works. if (!setConflictsParents.count(tx.vin[j].prevout.hash)) { // Rather than check the UTXO set - potentially expensive - // it's cheaper to just check if the new input refers to a // tx that's in the mempool. if (pool.mapTx.find(tx.vin[j].prevout.hash) != pool.mapTx.end()) return state.DoS(0, false, REJECT_NONSTANDARD, "replacement-adds-unconfirmed", false, strprintf("replacement %s adds unconfirmed input, idx %d", hash.ToString(), j)); } } // The replacement must pay greater fees than the transactions it // replaces - if we did the bandwidth used by those conflicting // transactions would not be paid for. if (nModifiedFees < nConflictingFees) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient fee", false, strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s", hash.ToString(), FormatMoney(nModifiedFees), FormatMoney(nConflictingFees))); } // Finally in addition to paying more fees than the conflicts the // new transaction must pay for its own bandwidth. CAmount nDeltaFees = nModifiedFees - nConflictingFees; if (nDeltaFees < ::minRelayTxFee.GetFee(nSize)) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient fee", false, strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s", hash.ToString(), FormatMoney(nDeltaFees), FormatMoney(::minRelayTxFee.GetFee(nSize)))); } } unsigned int scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS; if (!Params().RequireStandard()) { scriptVerifyFlags = GetArg("-promiscuousmempoolflags", scriptVerifyFlags); } // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. PrecomputedTransactionData txdata(tx); if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true, txdata)) { // SCRIPT_VERIFY_CLEANSTACK requires SCRIPT_VERIFY_WITNESS, so we // need to turn both off, and compare against just turning off CLEANSTACK // to see if the failure is specifically due to witness validation. if (tx.wit.IsNull() && CheckInputs(tx, state, view, true, scriptVerifyFlags & ~(SCRIPT_VERIFY_WITNESS | SCRIPT_VERIFY_CLEANSTACK), true, txdata) && !CheckInputs(tx, state, view, true, scriptVerifyFlags & ~SCRIPT_VERIFY_CLEANSTACK, true, txdata)) { // Only the witness is missing, so the transaction itself may be fine. state.SetCorruptionPossible(); } return false; } // Check again against just the consensus-critical mandatory script // verification flags, in case of bugs in the standard flags that cause // transactions to pass as valid when they're actually invalid. For // instance the STRICTENC flag was incorrectly allowing certain // CHECKSIG NOT scripts to pass, even though they were invalid. // // There is a similar check in CreateNewBlock() to prevent creating // invalid blocks, however allowing such transactions into the mempool // can be exploited as a DoS attack. if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true, txdata)) { return error("%s: BUG! PLEASE REPORT THIS! ConnectInputs failed against MANDATORY but not STANDARD flags %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } // Remove conflicting transactions from the mempool BOOST_FOREACH(const CTxMemPool::txiter it, allConflicting) { LogPrint("mempool", "replacing tx %s with %s for %s BTC additional fees, %d delta bytes\n", it->GetTx().GetHash().ToString(), hash.ToString(), FormatMoney(nModifiedFees - nConflictingFees), (int)nSize - (int)nConflictingSize); } pool.RemoveStaged(allConflicting, false); // Store transaction in memory pool.addUnchecked(hash, entry, setAncestors, !IsInitialBlockDownload()); // trim mempool and check if tx was trimmed if (!fOverrideMempoolLimit) { LimitMempoolSize(pool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); if (!pool.exists(hash)) return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full"); } } GetMainSignals().SyncTransaction(tx, NULL, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); return true; } bool AcceptToMemoryPoolWithTime(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree, bool* pfMissingInputs, int64_t nAcceptTime, bool fOverrideMempoolLimit, const CAmount nAbsurdFee) { std::vector vHashTxToUncache; bool res = AcceptToMemoryPoolWorker(pool, state, tx, fLimitFree, pfMissingInputs, nAcceptTime, fOverrideMempoolLimit, nAbsurdFee, vHashTxToUncache); if (!res) { BOOST_FOREACH(const uint256& hashTx, vHashTxToUncache) pcoinsTip->Uncache(hashTx); } // After we've (potentially) uncached entries, ensure our coins cache is still within its size limits CValidationState stateDummy; FlushStateToDisk(stateDummy, FLUSH_STATE_PERIODIC); return res; } bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree, bool* pfMissingInputs, bool fOverrideMempoolLimit, const CAmount nAbsurdFee) { return AcceptToMemoryPoolWithTime(pool, state, tx, fLimitFree, pfMissingInputs, GetTime(), fOverrideMempoolLimit, nAbsurdFee); } /** Return transaction in txOut, and if it was found inside a block, its hash is placed in hashBlock */ bool GetTransaction(const uint256 &hash, CTransaction &txOut, const Consensus::Params& consensusParams, uint256 &hashBlock, bool fAllowSlow) { CBlockIndex *pindexSlow = NULL; LOCK(cs_main); std::shared_ptr ptx = mempool.get(hash); if (ptx) { txOut = *ptx; return true; } if (fTxIndex) { CDiskTxPos postx; if (pblocktree->ReadTxIndex(hash, postx)) { CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION); if (file.IsNull()) return error("%s: OpenBlockFile failed", __func__); CBlockHeader header; try { file >> header; fseek(file.Get(), postx.nTxOffset, SEEK_CUR); file >> txOut; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } hashBlock = header.GetHash(); if (txOut.GetHash() != hash) return error("%s: txid mismatch", __func__); return true; } } if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it int nHeight = -1; { const CCoinsViewCache& view = *pcoinsTip; const CCoins* coins = view.AccessCoins(hash); if (coins) nHeight = coins->nHeight; } if (nHeight > 0) pindexSlow = chainActive[nHeight]; } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow, consensusParams)) { BOOST_FOREACH(const CTransaction &tx, block.vtx) { if (tx.GetHash() == hash) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool WriteBlockToDisk(const CBlock& block, CDiskBlockPos& pos, const CMessageHeader::MessageStartChars& messageStart) { // Open history file to append CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("WriteBlockToDisk: OpenBlockFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(block); fileout << FLATDATA(messageStart) << nSize; // Write block long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) return error("WriteBlockToDisk: ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << block; return true; } bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus::Params& consensusParams) { block.SetNull(); // Open history file to read CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString()); // Read block try { filein >> block; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams)) return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString()); return true; } bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams) { if (!ReadBlockFromDisk(block, pindex->GetBlockPos(), consensusParams)) return false; if (block.GetHash() != pindex->GetBlockHash()) return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s", pindex->ToString(), pindex->GetBlockPos().ToString()); return true; } CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams) { int halvings = nHeight / consensusParams.nSubsidyHalvingInterval; // Force block reward to zero when right shift is undefined. if (halvings >= 64) return 0; CAmount nSubsidy = 50 * COIN; // Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years. nSubsidy >>= halvings; return nSubsidy; } bool IsInitialBlockDownload() { const CChainParams& chainParams = Params(); // Once this function has returned false, it must remain false. static std::atomic latchToFalse{false}; // Optimization: pre-test latch before taking the lock. if (latchToFalse.load(std::memory_order_relaxed)) return false; LOCK(cs_main); if (latchToFalse.load(std::memory_order_relaxed)) return false; if (fImporting || fReindex) return true; if (chainActive.Tip() == NULL) return true; if (chainActive.Tip()->nChainWork < UintToArith256(chainParams.GetConsensus().nMinimumChainWork)) return true; if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge)) return true; latchToFalse.store(true, std::memory_order_relaxed); return false; } bool fLargeWorkForkFound = false; bool fLargeWorkInvalidChainFound = false; CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL; static void AlertNotify(const std::string& strMessage) { uiInterface.NotifyAlertChanged(); std::string strCmd = GetArg("-alertnotify", ""); if (strCmd.empty()) return; // Alert text should be plain ascii coming from a trusted source, but to // be safe we first strip anything not in safeChars, then add single quotes around // the whole string before passing it to the shell: std::string singleQuote("'"); std::string safeStatus = SanitizeString(strMessage); safeStatus = singleQuote+safeStatus+singleQuote; boost::replace_all(strCmd, "%s", safeStatus); boost::thread t(runCommand, strCmd); // thread runs free } void CheckForkWarningConditions() { AssertLockHeld(cs_main); // Before we get past initial download, we cannot reliably alert about forks // (we assume we don't get stuck on a fork before finishing our initial sync) if (IsInitialBlockDownload()) return; // If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it) // of our head, drop it if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72) pindexBestForkTip = NULL; if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6))) { if (!fLargeWorkForkFound && pindexBestForkBase) { std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") + pindexBestForkBase->phashBlock->ToString() + std::string("'"); AlertNotify(warning); } if (pindexBestForkTip && pindexBestForkBase) { LogPrintf("%s: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", __func__, pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(), pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString()); fLargeWorkForkFound = true; } else { LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n", __func__); fLargeWorkInvalidChainFound = true; } } else { fLargeWorkForkFound = false; fLargeWorkInvalidChainFound = false; } } void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip) { AssertLockHeld(cs_main); // If we are on a fork that is sufficiently large, set a warning flag CBlockIndex* pfork = pindexNewForkTip; CBlockIndex* plonger = chainActive.Tip(); while (pfork && pfork != plonger) { while (plonger && plonger->nHeight > pfork->nHeight) plonger = plonger->pprev; if (pfork == plonger) break; pfork = pfork->pprev; } // We define a condition where we should warn the user about as a fork of at least 7 blocks // with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours // We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network // hash rate operating on the fork. // or a chain that is entirely longer than ours and invalid (note that this should be detected by both) // We define it this way because it allows us to only store the highest fork tip (+ base) which meets // the 7-block condition and from this always have the most-likely-to-cause-warning fork if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) && pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) && chainActive.Height() - pindexNewForkTip->nHeight < 72) { pindexBestForkTip = pindexNewForkTip; pindexBestForkBase = pfork; } CheckForkWarningConditions(); } // Requires cs_main. void Misbehaving(NodeId pnode, int howmuch) { if (howmuch == 0) return; CNodeState *state = State(pnode); if (state == NULL) return; state->nMisbehavior += howmuch; int banscore = GetArg("-banscore", DEFAULT_BANSCORE_THRESHOLD); if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore) { LogPrintf("%s: %s peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED\n", __func__, state->name, pnode, state->nMisbehavior-howmuch, state->nMisbehavior); state->fShouldBan = true; } else LogPrintf("%s: %s peer=%d (%d -> %d)\n", __func__, state->name, pnode, state->nMisbehavior-howmuch, state->nMisbehavior); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork) pindexBestInvalid = pindexNew; LogPrintf("%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__, pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime())); CBlockIndex *tip = chainActive.Tip(); assert (tip); LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__, tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", tip->GetBlockTime())); CheckForkWarningConditions(); } void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) { if (!state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); setBlockIndexCandidates.erase(pindex); InvalidChainFound(pindex); } } void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight) { // mark inputs spent if (!tx.IsCoinBase()) { txundo.vprevout.reserve(tx.vin.size()); BOOST_FOREACH(const CTxIn &txin, tx.vin) { CCoinsModifier coins = inputs.ModifyCoins(txin.prevout.hash); unsigned nPos = txin.prevout.n; if (nPos >= coins->vout.size() || coins->vout[nPos].IsNull()) assert(false); // mark an outpoint spent, and construct undo information txundo.vprevout.push_back(CTxInUndo(coins->vout[nPos])); coins->Spend(nPos); if (coins->vout.size() == 0) { CTxInUndo& undo = txundo.vprevout.back(); undo.nHeight = coins->nHeight; undo.fCoinBase = coins->fCoinBase; undo.nVersion = coins->nVersion; } } } // add outputs inputs.ModifyNewCoins(tx.GetHash(), tx.IsCoinBase())->FromTx(tx, nHeight); } void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, int nHeight) { CTxUndo txundo; UpdateCoins(tx, inputs, txundo, nHeight); } bool CScriptCheck::operator()() { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; const CScriptWitness *witness = (nIn < ptxTo->wit.vtxinwit.size()) ? &ptxTo->wit.vtxinwit[nIn].scriptWitness : NULL; if (!VerifyScript(scriptSig, scriptPubKey, witness, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, amount, cacheStore, *txdata), &error)) { return false; } return true; } int GetSpendHeight(const CCoinsViewCache& inputs) { LOCK(cs_main); CBlockIndex* pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second; return pindexPrev->nHeight + 1; } namespace Consensus { bool CheckTxInputs(const CTransaction& tx, CValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight) { // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!inputs.HaveInputs(tx)) return state.Invalid(false, 0, "", "Inputs unavailable"); CAmount nValueIn = 0; CAmount nFees = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins *coins = inputs.AccessCoins(prevout.hash); assert(coins); // If prev is coinbase, check that it's matured if (coins->IsCoinBase()) { if (nSpendHeight - coins->nHeight < COINBASE_MATURITY) return state.Invalid(false, REJECT_INVALID, "bad-txns-premature-spend-of-coinbase", strprintf("tried to spend coinbase at depth %d", nSpendHeight - coins->nHeight)); } // Check for negative or overflow input values nValueIn += coins->vout[prevout.n].nValue; if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputvalues-outofrange"); } if (nValueIn < tx.GetValueOut()) return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout", false, strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(tx.GetValueOut()))); // Tally transaction fees CAmount nTxFee = nValueIn - tx.GetValueOut(); if (nTxFee < 0) return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-negative"); nFees += nTxFee; if (!MoneyRange(nFees)) return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange"); return true; } }// namespace Consensus bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheStore, PrecomputedTransactionData& txdata, std::vector *pvChecks) { if (!tx.IsCoinBase()) { if (!Consensus::CheckTxInputs(tx, state, inputs, GetSpendHeight(inputs))) return false; if (pvChecks) pvChecks->reserve(tx.vin.size()); // The first loop above does all the inexpensive checks. // Only if ALL inputs pass do we perform expensive ECDSA signature checks. // Helps prevent CPU exhaustion attacks. // Skip ECDSA signature verification when connecting blocks before the // last block chain checkpoint. Assuming the checkpoints are valid this // is safe because block merkle hashes are still computed and checked, // and any change will be caught at the next checkpoint. Of course, if // the checkpoint is for a chain that's invalid due to false scriptSigs // this optimization would allow an invalid chain to be accepted. if (fScriptChecks) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins* coins = inputs.AccessCoins(prevout.hash); assert(coins); // Verify signature CScriptCheck check(*coins, tx, i, flags, cacheStore, &txdata); if (pvChecks) { pvChecks->push_back(CScriptCheck()); check.swap(pvChecks->back()); } else if (!check()) { if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) { // Check whether the failure was caused by a // non-mandatory script verification check, such as // non-standard DER encodings or non-null dummy // arguments; if so, don't trigger DoS protection to // avoid splitting the network between upgraded and // non-upgraded nodes. CScriptCheck check2(*coins, tx, i, flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheStore, &txdata); if (check2()) return state.Invalid(false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError()))); } // Failures of other flags indicate a transaction that is // invalid in new blocks, e.g. a invalid P2SH. We DoS ban // such nodes as they are not following the protocol. That // said during an upgrade careful thought should be taken // as to the correct behavior - we may want to continue // peering with non-upgraded nodes even after soft-fork // super-majority signaling has occurred. return state.DoS(100,false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError()))); } } } } return true; } namespace { bool UndoWriteToDisk(const CBlockUndo& blockundo, CDiskBlockPos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart) { // Open history file to append CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("%s: OpenUndoFile failed", __func__); // Write index header unsigned int nSize = fileout.GetSerializeSize(blockundo); fileout << FLATDATA(messageStart) << nSize; // Write undo data long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) return error("%s: ftell failed", __func__); pos.nPos = (unsigned int)fileOutPos; fileout << blockundo; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << blockundo; fileout << hasher.GetHash(); return true; } bool UndoReadFromDisk(CBlockUndo& blockundo, const CDiskBlockPos& pos, const uint256& hashBlock) { // Open history file to read CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("%s: OpenUndoFile failed", __func__); // Read block uint256 hashChecksum; try { filein >> blockundo; filein >> hashChecksum; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << blockundo; if (hashChecksum != hasher.GetHash()) return error("%s: Checksum mismatch", __func__); return true; } /** Abort with a message */ bool AbortNode(const std::string& strMessage, const std::string& userMessage="") { strMiscWarning = strMessage; LogPrintf("*** %s\n", strMessage); uiInterface.ThreadSafeMessageBox( userMessage.empty() ? _("Error: A fatal internal error occurred, see debug.log for details") : userMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } bool AbortNode(CValidationState& state, const std::string& strMessage, const std::string& userMessage="") { AbortNode(strMessage, userMessage); return state.Error(strMessage); } } // anon namespace /** * Apply the undo operation of a CTxInUndo to the given chain state. * @param undo The undo object. * @param view The coins view to which to apply the changes. * @param out The out point that corresponds to the tx input. * @return True on success. */ static bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out) { bool fClean = true; CCoinsModifier coins = view.ModifyCoins(out.hash); if (undo.nHeight != 0) { // undo data contains height: this is the last output of the prevout tx being spent if (!coins->IsPruned()) fClean = fClean && error("%s: undo data overwriting existing transaction", __func__); coins->Clear(); coins->fCoinBase = undo.fCoinBase; coins->nHeight = undo.nHeight; coins->nVersion = undo.nVersion; } else { if (coins->IsPruned()) fClean = fClean && error("%s: undo data adding output to missing transaction", __func__); } if (coins->IsAvailable(out.n)) fClean = fClean && error("%s: undo data overwriting existing output", __func__); if (coins->vout.size() < out.n+1) coins->vout.resize(out.n+1); coins->vout[out.n] = undo.txout; return fClean; } bool DisconnectBlock(const CBlock& block, CValidationState& state, const CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean) { assert(pindex->GetBlockHash() == view.GetBestBlock()); if (pfClean) *pfClean = false; bool fClean = true; CBlockUndo blockUndo; CDiskBlockPos pos = pindex->GetUndoPos(); if (pos.IsNull()) return error("DisconnectBlock(): no undo data available"); if (!UndoReadFromDisk(blockUndo, pos, pindex->pprev->GetBlockHash())) return error("DisconnectBlock(): failure reading undo data"); if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) return error("DisconnectBlock(): block and undo data inconsistent"); // undo transactions in reverse order for (int i = block.vtx.size() - 1; i >= 0; i--) { const CTransaction &tx = block.vtx[i]; uint256 hash = tx.GetHash(); // Check that all outputs are available and match the outputs in the block itself // exactly. { CCoinsModifier outs = view.ModifyCoins(hash); outs->ClearUnspendable(); CCoins outsBlock(tx, pindex->nHeight); // The CCoins serialization does not serialize negative numbers. // No network rules currently depend on the version here, so an inconsistency is harmless // but it must be corrected before txout nversion ever influences a network rule. if (outsBlock.nVersion < 0) outs->nVersion = outsBlock.nVersion; if (*outs != outsBlock) fClean = fClean && error("DisconnectBlock(): added transaction mismatch? database corrupted"); // remove outputs outs->Clear(); } // restore inputs if (i > 0) { // not coinbases const CTxUndo &txundo = blockUndo.vtxundo[i-1]; if (txundo.vprevout.size() != tx.vin.size()) return error("DisconnectBlock(): transaction and undo data inconsistent"); for (unsigned int j = tx.vin.size(); j-- > 0;) { const COutPoint &out = tx.vin[j].prevout; const CTxInUndo &undo = txundo.vprevout[j]; if (!ApplyTxInUndo(undo, view, out)) fClean = false; } } } // move best block pointer to prevout block view.SetBestBlock(pindex->pprev->GetBlockHash()); if (pfClean) { *pfClean = fClean; return true; } return fClean; } void static FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); CDiskBlockPos posOld(nLastBlockFile, 0); FILE *fileOld = OpenBlockFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize); FileCommit(fileOld); fclose(fileOld); } fileOld = OpenUndoFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize); FileCommit(fileOld); fclose(fileOld); } } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize); static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("bitcoin-scriptch"); scriptcheckqueue.Thread(); } // Protected by cs_main VersionBitsCache versionbitscache; int32_t ComputeBlockVersion(const CBlockIndex* pindexPrev, const Consensus::Params& params) { LOCK(cs_main); int32_t nVersion = VERSIONBITS_TOP_BITS; for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) { ThresholdState state = VersionBitsState(pindexPrev, params, (Consensus::DeploymentPos)i, versionbitscache); if (state == THRESHOLD_LOCKED_IN || state == THRESHOLD_STARTED) { nVersion |= VersionBitsMask(params, (Consensus::DeploymentPos)i); } } return nVersion; } /** * Threshold condition checker that triggers when unknown versionbits are seen on the network. */ class WarningBitsConditionChecker : public AbstractThresholdConditionChecker { private: int bit; public: WarningBitsConditionChecker(int bitIn) : bit(bitIn) {} int64_t BeginTime(const Consensus::Params& params) const { return 0; } int64_t EndTime(const Consensus::Params& params) const { return std::numeric_limits::max(); } int Period(const Consensus::Params& params) const { return params.nMinerConfirmationWindow; } int Threshold(const Consensus::Params& params) const { return params.nRuleChangeActivationThreshold; } bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const { return ((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) && ((pindex->nVersion >> bit) & 1) != 0 && ((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0; } }; // Protected by cs_main static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS]; static int64_t nTimeCheck = 0; static int64_t nTimeForks = 0; static int64_t nTimeVerify = 0; static int64_t nTimeConnect = 0; static int64_t nTimeIndex = 0; static int64_t nTimeCallbacks = 0; static int64_t nTimeTotal = 0; bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck) { AssertLockHeld(cs_main); int64_t nTimeStart = GetTimeMicros(); // Check it again in case a previous version let a bad block in if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); // verify that the view's current state corresponds to the previous block uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : pindex->pprev->GetBlockHash(); assert(hashPrevBlock == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its transactions // (its coinbase is unspendable) if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) { if (!fJustCheck) view.SetBestBlock(pindex->GetBlockHash()); return true; } bool fScriptChecks = true; if (fCheckpointsEnabled) { CBlockIndex *pindexLastCheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints()); if (pindexLastCheckpoint && pindexLastCheckpoint->GetAncestor(pindex->nHeight) == pindex) { // This block is an ancestor of a checkpoint: disable script checks fScriptChecks = false; } } int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart; LogPrint("bench", " - Sanity checks: %.2fms [%.2fs]\n", 0.001 * (nTime1 - nTimeStart), nTimeCheck * 0.000001); // Do not allow blocks that contain transactions which 'overwrite' older transactions, // unless those are already completely spent. // If such overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- even after // being sent to another address. // See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information. // This logic is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. // This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC. // Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the // two in the chain that violate it. This prevents exploiting the issue against nodes during their // initial block download. bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash. !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight==91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721"))); // Once BIP34 activated it was not possible to create new duplicate coinbases and thus other than starting // with the 2 existing duplicate coinbase pairs, not possible to create overwriting txs. But by the // time BIP34 activated, in each of the existing pairs the duplicate coinbase had overwritten the first // before the first had been spent. Since those coinbases are sufficiently buried its no longer possible to create further // duplicate transactions descending from the known pairs either. // If we're on the known chain at height greater than where BIP34 activated, we can save the db accesses needed for the BIP30 check. CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height); //Only continue to enforce if we're below BIP34 activation height or the block hash at that height doesn't correspond. fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == chainparams.GetConsensus().BIP34Hash)); if (fEnforceBIP30) { BOOST_FOREACH(const CTransaction& tx, block.vtx) { const CCoins* coins = view.AccessCoins(tx.GetHash()); if (coins && !coins->IsPruned()) return state.DoS(100, error("ConnectBlock(): tried to overwrite transaction"), REJECT_INVALID, "bad-txns-BIP30"); } } // BIP16 didn't become active until Apr 1 2012 int64_t nBIP16SwitchTime = 1333238400; bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime); unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE; // Start enforcing the DERSIG (BIP66) rule if (pindex->nHeight >= chainparams.GetConsensus().BIP66Height) { flags |= SCRIPT_VERIFY_DERSIG; } // Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule if (pindex->nHeight >= chainparams.GetConsensus().BIP65Height) { flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY; } // Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic. int nLockTimeFlags = 0; if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) { flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY; nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE; } // Start enforcing WITNESS rules using versionbits logic. if (IsWitnessEnabled(pindex->pprev, chainparams.GetConsensus())) { flags |= SCRIPT_VERIFY_WITNESS; flags |= SCRIPT_VERIFY_NULLDUMMY; } int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1; LogPrint("bench", " - Fork checks: %.2fms [%.2fs]\n", 0.001 * (nTime2 - nTime1), nTimeForks * 0.000001); CBlockUndo blockundo; CCheckQueueControl control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL); std::vector vOrphanErase; std::vector prevheights; CAmount nFees = 0; int nInputs = 0; int64_t nSigOpsCost = 0; CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size())); std::vector > vPos; vPos.reserve(block.vtx.size()); blockundo.vtxundo.reserve(block.vtx.size() - 1); std::vector txdata; txdata.reserve(block.vtx.size()); // Required so that pointers to individual PrecomputedTransactionData don't get invalidated for (unsigned int i = 0; i < block.vtx.size(); i++) { const CTransaction &tx = block.vtx[i]; nInputs += tx.vin.size(); if (!tx.IsCoinBase()) { if (!view.HaveInputs(tx)) return state.DoS(100, error("ConnectBlock(): inputs missing/spent"), REJECT_INVALID, "bad-txns-inputs-missingorspent"); // Check that transaction is BIP68 final // BIP68 lock checks (as opposed to nLockTime checks) must // be in ConnectBlock because they require the UTXO set prevheights.resize(tx.vin.size()); for (size_t j = 0; j < tx.vin.size(); j++) { prevheights[j] = view.AccessCoins(tx.vin[j].prevout.hash)->nHeight; } // Which orphan pool entries must we evict? for (size_t j = 0; j < tx.vin.size(); j++) { auto itByPrev = mapOrphanTransactionsByPrev.find(tx.vin[j].prevout); if (itByPrev == mapOrphanTransactionsByPrev.end()) continue; for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction& orphanTx = (*mi)->second.tx; const uint256& orphanHash = orphanTx.GetHash(); vOrphanErase.push_back(orphanHash); } } if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) { return state.DoS(100, error("%s: contains a non-BIP68-final transaction", __func__), REJECT_INVALID, "bad-txns-nonfinal"); } } // GetTransactionSigOpCost counts 3 types of sigops: // * legacy (always) // * p2sh (when P2SH enabled in flags and excludes coinbase) // * witness (when witness enabled in flags and excludes coinbase) nSigOpsCost += GetTransactionSigOpCost(tx, view, flags); if (nSigOpsCost > MAX_BLOCK_SIGOPS_COST) return state.DoS(100, error("ConnectBlock(): too many sigops"), REJECT_INVALID, "bad-blk-sigops"); txdata.emplace_back(tx); if (!tx.IsCoinBase()) { nFees += view.GetValueIn(tx)-tx.GetValueOut(); std::vector vChecks; bool fCacheResults = fJustCheck; /* Don't cache results if we're actually connecting blocks (still consult the cache, though) */ if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, txdata[i], nScriptCheckThreads ? &vChecks : NULL)) return error("ConnectBlock(): CheckInputs on %s failed with %s", tx.GetHash().ToString(), FormatStateMessage(state)); control.Add(vChecks); } CTxUndo undoDummy; if (i > 0) { blockundo.vtxundo.push_back(CTxUndo()); } UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight); vPos.push_back(std::make_pair(tx.GetHash(), pos)); pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); } int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2; LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime3 - nTime2), 0.001 * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime3 - nTime2) / (nInputs-1), nTimeConnect * 0.000001); CAmount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus()); if (block.vtx[0].GetValueOut() > blockReward) return state.DoS(100, error("ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d)", block.vtx[0].GetValueOut(), blockReward), REJECT_INVALID, "bad-cb-amount"); if (!control.Wait()) return state.DoS(100, false); int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2; LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime4 - nTime2), nInputs <= 1 ? 0 : 0.001 * (nTime4 - nTime2) / (nInputs-1), nTimeVerify * 0.000001); if (fJustCheck) return true; // Write undo information to disk if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS)) { if (pindex->GetUndoPos().IsNull()) { CDiskBlockPos _pos; if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40)) return error("ConnectBlock(): FindUndoPos failed"); if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart())) return AbortNode(state, "Failed to write undo data"); // update nUndoPos in block index pindex->nUndoPos = _pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; } pindex->RaiseValidity(BLOCK_VALID_SCRIPTS); setDirtyBlockIndex.insert(pindex); } if (fTxIndex) if (!pblocktree->WriteTxIndex(vPos)) return AbortNode(state, "Failed to write transaction index"); // add this block to the view's block chain view.SetBestBlock(pindex->GetBlockHash()); int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4; LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime5 - nTime4), nTimeIndex * 0.000001); // Watch for changes to the previous coinbase transaction. static uint256 hashPrevBestCoinBase; GetMainSignals().UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = block.vtx[0].GetHash(); // Erase orphan transactions include or precluded by this block if (vOrphanErase.size()) { int nErased = 0; BOOST_FOREACH(uint256 &orphanHash, vOrphanErase) { nErased += EraseOrphanTx(orphanHash); } LogPrint("mempool", "Erased %d orphan tx included or conflicted by block\n", nErased); } int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5; LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime6 - nTime5), nTimeCallbacks * 0.000001); return true; } /** * Update the on-disk chain state. * The caches and indexes are flushed depending on the mode we're called with * if they're too large, if it's been a while since the last write, * or always and in all cases if we're in prune mode and are deleting files. */ bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode) { const CChainParams& chainparams = Params(); LOCK2(cs_main, cs_LastBlockFile); static int64_t nLastWrite = 0; static int64_t nLastFlush = 0; static int64_t nLastSetChain = 0; std::set setFilesToPrune; bool fFlushForPrune = false; try { if (fPruneMode && fCheckForPruning && !fReindex) { FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight()); fCheckForPruning = false; if (!setFilesToPrune.empty()) { fFlushForPrune = true; if (!fHavePruned) { pblocktree->WriteFlag("prunedblockfiles", true); fHavePruned = true; } } } int64_t nNow = GetTimeMicros(); // Avoid writing/flushing immediately after startup. if (nLastWrite == 0) { nLastWrite = nNow; } if (nLastFlush == 0) { nLastFlush = nNow; } if (nLastSetChain == 0) { nLastSetChain = nNow; } size_t cacheSize = pcoinsTip->DynamicMemoryUsage(); // The cache is large and close to the limit, but we have time now (not in the middle of a block processing). bool fCacheLarge = mode == FLUSH_STATE_PERIODIC && cacheSize * (10.0/9) > nCoinCacheUsage; // The cache is over the limit, we have to write now. bool fCacheCritical = mode == FLUSH_STATE_IF_NEEDED && cacheSize > nCoinCacheUsage; // It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash. bool fPeriodicWrite = mode == FLUSH_STATE_PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000; // It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage. bool fPeriodicFlush = mode == FLUSH_STATE_PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000; // Combine all conditions that result in a full cache flush. bool fDoFullFlush = (mode == FLUSH_STATE_ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune; // Write blocks and block index to disk. if (fDoFullFlush || fPeriodicWrite) { // Depend on nMinDiskSpace to ensure we can write block index if (!CheckDiskSpace(0)) return state.Error("out of disk space"); // First make sure all block and undo data is flushed to disk. FlushBlockFile(); // Then update all block file information (which may refer to block and undo files). { std::vector > vFiles; vFiles.reserve(setDirtyFileInfo.size()); for (set::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) { vFiles.push_back(make_pair(*it, &vinfoBlockFile[*it])); setDirtyFileInfo.erase(it++); } std::vector vBlocks; vBlocks.reserve(setDirtyBlockIndex.size()); for (set::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) { vBlocks.push_back(*it); setDirtyBlockIndex.erase(it++); } if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) { return AbortNode(state, "Files to write to block index database"); } } // Finally remove any pruned files if (fFlushForPrune) UnlinkPrunedFiles(setFilesToPrune); nLastWrite = nNow; } // Flush best chain related state. This can only be done if the blocks / block index write was also done. if (fDoFullFlush) { // Typical CCoins structures on disk are around 128 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is already // an overestimation, as most will delete an existing entry or // overwrite one. Still, use a conservative safety factor of 2. if (!CheckDiskSpace(128 * 2 * 2 * pcoinsTip->GetCacheSize())) return state.Error("out of disk space"); // Flush the chainstate (which may refer to block index entries). if (!pcoinsTip->Flush()) return AbortNode(state, "Failed to write to coin database"); nLastFlush = nNow; } if (fDoFullFlush || ((mode == FLUSH_STATE_ALWAYS || mode == FLUSH_STATE_PERIODIC) && nNow > nLastSetChain + (int64_t)DATABASE_WRITE_INTERVAL * 1000000)) { // Update best block in wallet (so we can detect restored wallets). GetMainSignals().SetBestChain(chainActive.GetLocator()); nLastSetChain = nNow; } } catch (const std::runtime_error& e) { return AbortNode(state, std::string("System error while flushing: ") + e.what()); } return true; } void FlushStateToDisk() { CValidationState state; FlushStateToDisk(state, FLUSH_STATE_ALWAYS); } void PruneAndFlush() { CValidationState state; fCheckForPruning = true; FlushStateToDisk(state, FLUSH_STATE_NONE); } /** Update chainActive and related internal data structures. */ void static UpdateTip(CBlockIndex *pindexNew, const CChainParams& chainParams) { chainActive.SetTip(pindexNew); // New best block mempool.AddTransactionsUpdated(1); cvBlockChange.notify_all(); static bool fWarned = false; std::vector warningMessages; if (!IsInitialBlockDownload()) { int nUpgraded = 0; const CBlockIndex* pindex = chainActive.Tip(); for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) { WarningBitsConditionChecker checker(bit); ThresholdState state = checker.GetStateFor(pindex, chainParams.GetConsensus(), warningcache[bit]); if (state == THRESHOLD_ACTIVE || state == THRESHOLD_LOCKED_IN) { if (state == THRESHOLD_ACTIVE) { strMiscWarning = strprintf(_("Warning: unknown new rules activated (versionbit %i)"), bit); if (!fWarned) { AlertNotify(strMiscWarning); fWarned = true; } } else { warningMessages.push_back(strprintf("unknown new rules are about to activate (versionbit %i)", bit)); } } } // Check the version of the last 100 blocks to see if we need to upgrade: for (int i = 0; i < 100 && pindex != NULL; i++) { int32_t nExpectedVersion = ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus()); if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION && (pindex->nVersion & ~nExpectedVersion) != 0) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) warningMessages.push_back(strprintf("%d of last 100 blocks have unexpected version", nUpgraded)); if (nUpgraded > 100/2) { // strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user: strMiscWarning = _("Warning: Unknown block versions being mined! It's possible unknown rules are in effect"); if (!fWarned) { AlertNotify(strMiscWarning); fWarned = true; } } } LogPrintf("%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu date='%s' progress=%f cache=%.1fMiB(%utx)", __func__, chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), chainActive.Tip()->nVersion, log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), chainActive.Tip()), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1<<20)), pcoinsTip->GetCacheSize()); if (!warningMessages.empty()) LogPrintf(" warning='%s'", boost::algorithm::join(warningMessages, ", ")); LogPrintf("\n"); } /** Disconnect chainActive's tip. You probably want to call mempool.removeForReorg and manually re-limit mempool size after this, with cs_main held. */ bool static DisconnectTip(CValidationState& state, const CChainParams& chainparams, bool fBare = false) { CBlockIndex *pindexDelete = chainActive.Tip(); assert(pindexDelete); // Read block from disk. CBlock block; if (!ReadBlockFromDisk(block, pindexDelete, chainparams.GetConsensus())) return AbortNode(state, "Failed to read block"); // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(pcoinsTip); if (!DisconnectBlock(block, state, pindexDelete, view)) return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString()); assert(view.Flush()); } LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) return false; if (!fBare) { // Resurrect mempool transactions from the disconnected block. std::vector vHashUpdate; BOOST_FOREACH(const CTransaction &tx, block.vtx) { // ignore validation errors in resurrected transactions CValidationState stateDummy; if (tx.IsCoinBase() || !AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL, true)) { mempool.removeRecursive(tx); } else if (mempool.exists(tx.GetHash())) { vHashUpdate.push_back(tx.GetHash()); } } // AcceptToMemoryPool/addUnchecked all assume that new mempool entries have // no in-mempool children, which is generally not true when adding // previously-confirmed transactions back to the mempool. // UpdateTransactionsFromBlock finds descendants of any transactions in this // block that were added back and cleans up the mempool state. mempool.UpdateTransactionsFromBlock(vHashUpdate); } // Update chainActive and related variables. UpdateTip(pindexDelete->pprev, chainparams); // Let wallets know transactions went from 1-confirmed to // 0-confirmed or conflicted: BOOST_FOREACH(const CTransaction &tx, block.vtx) { GetMainSignals().SyncTransaction(tx, pindexDelete->pprev, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); } return true; } static int64_t nTimeReadFromDisk = 0; static int64_t nTimeConnectTotal = 0; static int64_t nTimeFlush = 0; static int64_t nTimeChainState = 0; static int64_t nTimePostConnect = 0; /** * Connect a new block to chainActive. pblock is either NULL or a pointer to a CBlock * corresponding to pindexNew, to bypass loading it again from disk. */ bool static ConnectTip(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexNew, const CBlock* pblock, std::vector> &txConflicted, std::vector> &txChanged) { assert(pindexNew->pprev == chainActive.Tip()); // Read block from disk. int64_t nTime1 = GetTimeMicros(); CBlock block; if (!pblock) { if (!ReadBlockFromDisk(block, pindexNew, chainparams.GetConsensus())) return AbortNode(state, "Failed to read block"); pblock = █ } // Apply the block atomically to the chain state. int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1; int64_t nTime3; LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001); { CCoinsViewCache view(pcoinsTip); bool rv = ConnectBlock(*pblock, state, pindexNew, view, chainparams); GetMainSignals().BlockChecked(*pblock, state); if (!rv) { if (state.IsInvalid()) InvalidBlockFound(pindexNew, state); return error("ConnectTip(): ConnectBlock %s failed", pindexNew->GetBlockHash().ToString()); } nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2; LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001); assert(view.Flush()); } int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3; LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) return false; int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4; LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001); // Remove conflicting transactions from the mempool.; mempool.removeForBlock(pblock->vtx, pindexNew->nHeight, &txConflicted, !IsInitialBlockDownload()); // Update chainActive & related variables. UpdateTip(pindexNew, chainparams); for(unsigned int i=0; i < pblock->vtx.size(); i++) txChanged.emplace_back(pblock->vtx[i], pindexNew, i); int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1; LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001); LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001); return true; } /** * Return the tip of the chain with the most work in it, that isn't * known to be invalid (it's however far from certain to be valid). */ static CBlockIndex* FindMostWorkChain() { do { CBlockIndex *pindexNew = NULL; // Find the best candidate header. { std::set::reverse_iterator it = setBlockIndexCandidates.rbegin(); if (it == setBlockIndexCandidates.rend()) return NULL; pindexNew = *it; } // Check whether all blocks on the path between the currently active chain and the candidate are valid. // Just going until the active chain is an optimization, as we know all blocks in it are valid already. CBlockIndex *pindexTest = pindexNew; bool fInvalidAncestor = false; while (pindexTest && !chainActive.Contains(pindexTest)) { assert(pindexTest->nChainTx || pindexTest->nHeight == 0); // Pruned nodes may have entries in setBlockIndexCandidates for // which block files have been deleted. Remove those as candidates // for the most work chain if we come across them; we can't switch // to a chain unless we have all the non-active-chain parent blocks. bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK; bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA); if (fFailedChain || fMissingData) { // Candidate chain is not usable (either invalid or missing data) if (fFailedChain && (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork)) pindexBestInvalid = pindexNew; CBlockIndex *pindexFailed = pindexNew; // Remove the entire chain from the set. while (pindexTest != pindexFailed) { if (fFailedChain) { pindexFailed->nStatus |= BLOCK_FAILED_CHILD; } else if (fMissingData) { // If we're missing data, then add back to mapBlocksUnlinked, // so that if the block arrives in the future we can try adding // to setBlockIndexCandidates again. mapBlocksUnlinked.insert(std::make_pair(pindexFailed->pprev, pindexFailed)); } setBlockIndexCandidates.erase(pindexFailed); pindexFailed = pindexFailed->pprev; } setBlockIndexCandidates.erase(pindexTest); fInvalidAncestor = true; break; } pindexTest = pindexTest->pprev; } if (!fInvalidAncestor) return pindexNew; } while(true); } /** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */ static void PruneBlockIndexCandidates() { // Note that we can't delete the current block itself, as we may need to return to it later in case a // reorganization to a better block fails. std::set::iterator it = setBlockIndexCandidates.begin(); while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) { setBlockIndexCandidates.erase(it++); } // Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates. assert(!setBlockIndexCandidates.empty()); } /** * Try to make some progress towards making pindexMostWork the active block. * pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork. */ static bool ActivateBestChainStep(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexMostWork, const CBlock* pblock, bool& fInvalidFound, std::vector>& txConflicted, std::vector>& txChanged) { AssertLockHeld(cs_main); const CBlockIndex *pindexOldTip = chainActive.Tip(); const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork); // Disconnect active blocks which are no longer in the best chain. bool fBlocksDisconnected = false; while (chainActive.Tip() && chainActive.Tip() != pindexFork) { if (!DisconnectTip(state, chainparams)) return false; fBlocksDisconnected = true; } // Build list of new blocks to connect. std::vector vpindexToConnect; bool fContinue = true; int nHeight = pindexFork ? pindexFork->nHeight : -1; while (fContinue && nHeight != pindexMostWork->nHeight) { // Don't iterate the entire list of potential improvements toward the best tip, as we likely only need // a few blocks along the way. int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight); vpindexToConnect.clear(); vpindexToConnect.reserve(nTargetHeight - nHeight); CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight); while (pindexIter && pindexIter->nHeight != nHeight) { vpindexToConnect.push_back(pindexIter); pindexIter = pindexIter->pprev; } nHeight = nTargetHeight; // Connect new blocks. BOOST_REVERSE_FOREACH(CBlockIndex *pindexConnect, vpindexToConnect) { if (!ConnectTip(state, chainparams, pindexConnect, pindexConnect == pindexMostWork ? pblock : NULL, txConflicted, txChanged)) { if (state.IsInvalid()) { // The block violates a consensus rule. if (!state.CorruptionPossible()) InvalidChainFound(vpindexToConnect.back()); state = CValidationState(); fInvalidFound = true; fContinue = false; break; } else { // A system error occurred (disk space, database error, ...). return false; } } else { PruneBlockIndexCandidates(); if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) { // We're in a better position than we were. Return temporarily to release the lock. fContinue = false; break; } } } } if (fBlocksDisconnected) { mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); } mempool.check(pcoinsTip); // Callbacks/notifications for a new best chain. if (fInvalidFound) CheckForkWarningConditionsOnNewFork(vpindexToConnect.back()); else CheckForkWarningConditions(); return true; } static void NotifyHeaderTip() { bool fNotify = false; bool fInitialBlockDownload = false; static CBlockIndex* pindexHeaderOld = NULL; CBlockIndex* pindexHeader = NULL; { LOCK(cs_main); pindexHeader = pindexBestHeader; if (pindexHeader != pindexHeaderOld) { fNotify = true; fInitialBlockDownload = IsInitialBlockDownload(); pindexHeaderOld = pindexHeader; } } // Send block tip changed notifications without cs_main if (fNotify) { uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader); } } /** * Make the best chain active, in multiple steps. The result is either failure * or an activated best chain. pblock is either NULL or a pointer to a block * that is already loaded (to avoid loading it again from disk). */ bool ActivateBestChain(CValidationState &state, const CChainParams& chainparams, const CBlock *pblock) { CBlockIndex *pindexMostWork = NULL; CBlockIndex *pindexNewTip = NULL; std::vector> txChanged; if (pblock) txChanged.reserve(pblock->vtx.size()); do { txChanged.clear(); boost::this_thread::interruption_point(); if (ShutdownRequested()) break; const CBlockIndex *pindexFork; std::vector> txConflicted; bool fInitialDownload; { LOCK(cs_main); CBlockIndex *pindexOldTip = chainActive.Tip(); if (pindexMostWork == NULL) { pindexMostWork = FindMostWorkChain(); } // Whether we have anything to do at all. if (pindexMostWork == NULL || pindexMostWork == chainActive.Tip()) return true; bool fInvalidFound = false; if (!ActivateBestChainStep(state, chainparams, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : NULL, fInvalidFound, txConflicted, txChanged)) return false; if (fInvalidFound) { // Wipe cache, we may need another branch now. pindexMostWork = NULL; } pindexNewTip = chainActive.Tip(); pindexFork = chainActive.FindFork(pindexOldTip); fInitialDownload = IsInitialBlockDownload(); } // When we reach this point, we switched to a new tip (stored in pindexNewTip). // Notifications/callbacks that can run without cs_main // throw all transactions though the signal-interface // while _not_ holding the cs_main lock for(std::shared_ptr tx : txConflicted) { GetMainSignals().SyncTransaction(*tx, pindexNewTip, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); } // ... and about transactions that got confirmed: for(unsigned int i = 0; i < txChanged.size(); i++) GetMainSignals().SyncTransaction(std::get<0>(txChanged[i]), std::get<1>(txChanged[i]), std::get<2>(txChanged[i])); // Notify external listeners about the new tip. GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload); // Always notify the UI if a new block tip was connected if (pindexFork != pindexNewTip) { uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip); } } while (pindexNewTip != pindexMostWork); CheckBlockIndex(chainparams.GetConsensus()); // Write changes periodically to disk, after relay. if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) { return false; } return true; } bool PreciousBlock(CValidationState& state, const CChainParams& params, CBlockIndex *pindex) { { LOCK(cs_main); if (pindex->nChainWork < chainActive.Tip()->nChainWork) { // Nothing to do, this block is not at the tip. return true; } if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) { // The chain has been extended since the last call, reset the counter. nBlockReverseSequenceId = -1; } nLastPreciousChainwork = chainActive.Tip()->nChainWork; setBlockIndexCandidates.erase(pindex); pindex->nSequenceId = nBlockReverseSequenceId; if (nBlockReverseSequenceId > std::numeric_limits::min()) { // We can't keep reducing the counter if somebody really wants to // call preciousblock 2**31-1 times on the same set of tips... nBlockReverseSequenceId--; } if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->nChainTx) { setBlockIndexCandidates.insert(pindex); PruneBlockIndexCandidates(); } } return ActivateBestChain(state, params); } bool InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex *pindex) { AssertLockHeld(cs_main); // Mark the block itself as invalid. pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); setBlockIndexCandidates.erase(pindex); while (chainActive.Contains(pindex)) { CBlockIndex *pindexWalk = chainActive.Tip(); pindexWalk->nStatus |= BLOCK_FAILED_CHILD; setDirtyBlockIndex.insert(pindexWalk); setBlockIndexCandidates.erase(pindexWalk); // ActivateBestChain considers blocks already in chainActive // unconditionally valid already, so force disconnect away from it. if (!DisconnectTip(state, chainparams)) { mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); return false; } } LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); // The resulting new best tip may not be in setBlockIndexCandidates anymore, so // add it again. BlockMap::iterator it = mapBlockIndex.begin(); while (it != mapBlockIndex.end()) { if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && !setBlockIndexCandidates.value_comp()(it->second, chainActive.Tip())) { setBlockIndexCandidates.insert(it->second); } it++; } InvalidChainFound(pindex); mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); return true; } bool ResetBlockFailureFlags(CBlockIndex *pindex) { AssertLockHeld(cs_main); int nHeight = pindex->nHeight; // Remove the invalidity flag from this block and all its descendants. BlockMap::iterator it = mapBlockIndex.begin(); while (it != mapBlockIndex.end()) { if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) { it->second->nStatus &= ~BLOCK_FAILED_MASK; setDirtyBlockIndex.insert(it->second); if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) { setBlockIndexCandidates.insert(it->second); } if (it->second == pindexBestInvalid) { // Reset invalid block marker if it was pointing to one of those. pindexBestInvalid = NULL; } } it++; } // Remove the invalidity flag from all ancestors too. while (pindex != NULL) { if (pindex->nStatus & BLOCK_FAILED_MASK) { pindex->nStatus &= ~BLOCK_FAILED_MASK; setDirtyBlockIndex.insert(pindex); } pindex = pindex->pprev; } return true; } CBlockIndex* AddToBlockIndex(const CBlockHeader& block) { // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end()) return it->second; // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(block); assert(pindexNew); // We assign the sequence id to blocks only when the full data is available, // to avoid miners withholding blocks but broadcasting headers, to get a // competitive advantage. pindexNew->nSequenceId = 0; BlockMap::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; pindexNew->BuildSkip(); } pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew); pindexNew->RaiseValidity(BLOCK_VALID_TREE); if (pindexBestHeader == NULL || pindexBestHeader->nChainWork < pindexNew->nChainWork) pindexBestHeader = pindexNew; setDirtyBlockIndex.insert(pindexNew); return pindexNew; } /** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */ bool ReceivedBlockTransactions(const CBlock &block, CValidationState& state, CBlockIndex *pindexNew, const CDiskBlockPos& pos) { pindexNew->nTx = block.vtx.size(); pindexNew->nChainTx = 0; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus |= BLOCK_HAVE_DATA; if (IsWitnessEnabled(pindexNew->pprev, Params().GetConsensus())) { pindexNew->nStatus |= BLOCK_OPT_WITNESS; } pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS); setDirtyBlockIndex.insert(pindexNew); if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) { // If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS. deque queue; queue.push_back(pindexNew); // Recursively process any descendant blocks that now may be eligible to be connected. while (!queue.empty()) { CBlockIndex *pindex = queue.front(); queue.pop_front(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; { LOCK(cs_nBlockSequenceId); pindex->nSequenceId = nBlockSequenceId++; } if (chainActive.Tip() == NULL || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) { setBlockIndexCandidates.insert(pindex); } std::pair::iterator, std::multimap::iterator> range = mapBlocksUnlinked.equal_range(pindex); while (range.first != range.second) { std::multimap::iterator it = range.first; queue.push_back(it->second); range.first++; mapBlocksUnlinked.erase(it); } } } else { if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) { mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew)); } } return true; } bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false) { LOCK(cs_LastBlockFile); unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } if (!fKnown) { while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { nFile++; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } } pos.nFile = nFile; pos.nPos = vinfoBlockFile[nFile].nSize; } if ((int)nFile != nLastBlockFile) { if (!fKnown) { LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString()); } FlushBlockFile(!fKnown); nLastBlockFile = nFile; } vinfoBlockFile[nFile].AddBlock(nHeight, nTime); if (fKnown) vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize); else vinfoBlockFile[nFile].nSize += nAddSize; if (!fKnown) { unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (fPruneMode) fCheckForPruning = true; if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenBlockFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } } setDirtyFileInfo.insert(nFile); return true; } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); unsigned int nNewSize; pos.nPos = vinfoBlockFile[nFile].nUndoSize; nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize; setDirtyFileInfo.insert(nFile); unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (fPruneMode) fCheckForPruning = true; if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenUndoFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } return true; } bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW) { // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams)) return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed"); return true; } bool CheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW, bool fCheckMerkleRoot) { // These are checks that are independent of context. if (block.fChecked) return true; // Check that the header is valid (particularly PoW). This is mostly // redundant with the call in AcceptBlockHeader. if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW)) return false; // Check the merkle root. if (fCheckMerkleRoot) { bool mutated; uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated); if (block.hashMerkleRoot != hashMerkleRoot2) return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch"); // Check for merkle tree malleability (CVE-2012-2459): repeating sequences // of transactions in a block without affecting the merkle root of a block, // while still invalidating it. if (mutated) return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction"); } // All potential-corruption validation must be done before we do any // transaction validation, as otherwise we may mark the header as invalid // because we receive the wrong transactions for it. // Note that witness malleability is checked in ContextualCheckBlock, so no // checks that use witness data may be performed here. // Size limits if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_BASE_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) > MAX_BLOCK_BASE_SIZE) return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed"); // First transaction must be coinbase, the rest must not be if (block.vtx.empty() || !block.vtx[0].IsCoinBase()) return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase"); for (unsigned int i = 1; i < block.vtx.size(); i++) if (block.vtx[i].IsCoinBase()) return state.DoS(100, false, REJECT_INVALID, "bad-cb-multiple", false, "more than one coinbase"); // Check transactions for (const auto& tx : block.vtx) if (!CheckTransaction(tx, state)) return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(), strprintf("Transaction check failed (tx hash %s) %s", tx.GetHash().ToString(), state.GetDebugMessage())); unsigned int nSigOps = 0; for (const auto& tx : block.vtx) { nSigOps += GetLegacySigOpCount(tx); } if (nSigOps * WITNESS_SCALE_FACTOR > MAX_BLOCK_SIGOPS_COST) return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount"); if (fCheckPOW && fCheckMerkleRoot) block.fChecked = true; return true; } static bool CheckIndexAgainstCheckpoint(const CBlockIndex* pindexPrev, CValidationState& state, const CChainParams& chainparams, const uint256& hash) { if (*pindexPrev->phashBlock == chainparams.GetConsensus().hashGenesisBlock) return true; int nHeight = pindexPrev->nHeight+1; // Don't accept any forks from the main chain prior to last checkpoint CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints()); if (pcheckpoint && nHeight < pcheckpoint->nHeight) return state.DoS(100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight)); return true; } bool IsWitnessEnabled(const CBlockIndex* pindexPrev, const Consensus::Params& params) { LOCK(cs_main); return (VersionBitsState(pindexPrev, params, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == THRESHOLD_ACTIVE); } // Compute at which vout of the block's coinbase transaction the witness // commitment occurs, or -1 if not found. static int GetWitnessCommitmentIndex(const CBlock& block) { int commitpos = -1; for (size_t o = 0; o < block.vtx[0].vout.size(); o++) { if (block.vtx[0].vout[o].scriptPubKey.size() >= 38 && block.vtx[0].vout[o].scriptPubKey[0] == OP_RETURN && block.vtx[0].vout[o].scriptPubKey[1] == 0x24 && block.vtx[0].vout[o].scriptPubKey[2] == 0xaa && block.vtx[0].vout[o].scriptPubKey[3] == 0x21 && block.vtx[0].vout[o].scriptPubKey[4] == 0xa9 && block.vtx[0].vout[o].scriptPubKey[5] == 0xed) { commitpos = o; } } return commitpos; } void UpdateUncommittedBlockStructures(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams) { int commitpos = GetWitnessCommitmentIndex(block); static const std::vector nonce(32, 0x00); if (commitpos != -1 && IsWitnessEnabled(pindexPrev, consensusParams) && block.vtx[0].wit.IsEmpty()) { block.vtx[0].wit.vtxinwit.resize(1); block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.resize(1); block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0] = nonce; } } std::vector GenerateCoinbaseCommitment(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams) { std::vector commitment; int commitpos = GetWitnessCommitmentIndex(block); bool fHaveWitness = false; for (size_t t = 1; t < block.vtx.size(); t++) { if (!block.vtx[t].wit.IsNull()) { fHaveWitness = true; break; } } std::vector ret(32, 0x00); if (fHaveWitness && IsWitnessEnabled(pindexPrev, consensusParams)) { if (commitpos == -1) { uint256 witnessroot = BlockWitnessMerkleRoot(block, NULL); CHash256().Write(witnessroot.begin(), 32).Write(&ret[0], 32).Finalize(witnessroot.begin()); CTxOut out; out.nValue = 0; out.scriptPubKey.resize(38); out.scriptPubKey[0] = OP_RETURN; out.scriptPubKey[1] = 0x24; out.scriptPubKey[2] = 0xaa; out.scriptPubKey[3] = 0x21; out.scriptPubKey[4] = 0xa9; out.scriptPubKey[5] = 0xed; memcpy(&out.scriptPubKey[6], witnessroot.begin(), 32); commitment = std::vector(out.scriptPubKey.begin(), out.scriptPubKey.end()); const_cast*>(&block.vtx[0].vout)->push_back(out); block.vtx[0].UpdateHash(); } } UpdateUncommittedBlockStructures(block, pindexPrev, consensusParams); return commitment; } bool ContextualCheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev, int64_t nAdjustedTime) { const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1; // Check proof of work if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams)) return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work"); // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early"); // Check timestamp if (block.GetBlockTime() > nAdjustedTime + 2 * 60 * 60) return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future"); // Reject outdated version blocks when 95% (75% on testnet) of the network has upgraded: // check for version 2, 3 and 4 upgrades if((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) || (block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) || (block.nVersion < 4 && nHeight >= consensusParams.BIP65Height)) return state.Invalid(false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", block.nVersion), strprintf("rejected nVersion=0x%08x block", block.nVersion)); return true; } bool ContextualCheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1; // Start enforcing BIP113 (Median Time Past) using versionbits logic. int nLockTimeFlags = 0; if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) { nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST; } int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST) ? pindexPrev->GetMedianTimePast() : block.GetBlockTime(); // Check that all transactions are finalized for (const auto& tx : block.vtx) { if (!IsFinalTx(tx, nHeight, nLockTimeCutoff)) { return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal", false, "non-final transaction"); } } // Enforce rule that the coinbase starts with serialized block height if (nHeight >= consensusParams.BIP34Height) { CScript expect = CScript() << nHeight; if (block.vtx[0].vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase"); } } // Validation for witness commitments. // * We compute the witness hash (which is the hash including witnesses) of all the block's transactions, except the // coinbase (where 0x0000....0000 is used instead). // * The coinbase scriptWitness is a stack of a single 32-byte vector, containing a witness nonce (unconstrained). // * We build a merkle tree with all those witness hashes as leaves (similar to the hashMerkleRoot in the block header). // * There must be at least one output whose scriptPubKey is a single 36-byte push, the first 4 bytes of which are // {0xaa, 0x21, 0xa9, 0xed}, and the following 32 bytes are SHA256^2(witness root, witness nonce). In case there are // multiple, the last one is used. bool fHaveWitness = false; if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == THRESHOLD_ACTIVE) { int commitpos = GetWitnessCommitmentIndex(block); if (commitpos != -1) { bool malleated = false; uint256 hashWitness = BlockWitnessMerkleRoot(block, &malleated); // The malleation check is ignored; as the transaction tree itself // already does not permit it, it is impossible to trigger in the // witness tree. if (block.vtx[0].wit.vtxinwit.size() != 1 || block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.size() != 1 || block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0].size() != 32) { return state.DoS(100, false, REJECT_INVALID, "bad-witness-nonce-size", true, strprintf("%s : invalid witness nonce size", __func__)); } CHash256().Write(hashWitness.begin(), 32).Write(&block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0][0], 32).Finalize(hashWitness.begin()); if (memcmp(hashWitness.begin(), &block.vtx[0].vout[commitpos].scriptPubKey[6], 32)) { return state.DoS(100, false, REJECT_INVALID, "bad-witness-merkle-match", true, strprintf("%s : witness merkle commitment mismatch", __func__)); } fHaveWitness = true; } } // No witness data is allowed in blocks that don't commit to witness data, as this would otherwise leave room for spam if (!fHaveWitness) { for (size_t i = 0; i < block.vtx.size(); i++) { if (!block.vtx[i].wit.IsNull()) { return state.DoS(100, false, REJECT_INVALID, "unexpected-witness", true, strprintf("%s : unexpected witness data found", __func__)); } } } // After the coinbase witness nonce and commitment are verified, // we can check if the block weight passes (before we've checked the // coinbase witness, it would be possible for the weight to be too // large by filling up the coinbase witness, which doesn't change // the block hash, so we couldn't mark the block as permanently // failed). if (GetBlockWeight(block) > MAX_BLOCK_WEIGHT) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-weight", false, strprintf("%s : weight limit failed", __func__)); } return true; } static bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex=NULL) { AssertLockHeld(cs_main); // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator miSelf = mapBlockIndex.find(hash); CBlockIndex *pindex = NULL; if (hash != chainparams.GetConsensus().hashGenesisBlock) { if (miSelf != mapBlockIndex.end()) { // Block header is already known. pindex = miSelf->second; if (ppindex) *ppindex = pindex; if (pindex->nStatus & BLOCK_FAILED_MASK) return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate"); return true; } if (!CheckBlockHeader(block, state, chainparams.GetConsensus())) return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); // Get prev block index CBlockIndex* pindexPrev = NULL; BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) return state.DoS(10, error("%s: prev block not found", __func__), 0, "bad-prevblk"); pindexPrev = (*mi).second; if (pindexPrev->nStatus & BLOCK_FAILED_MASK) return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk"); assert(pindexPrev); if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, hash)) return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str()); if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime())) return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } if (pindex == NULL) pindex = AddToBlockIndex(block); if (ppindex) *ppindex = pindex; CheckBlockIndex(chainparams.GetConsensus()); return true; } /** Store block on disk. If dbp is non-NULL, the file is known to already reside on disk */ static bool AcceptBlock(const CBlock& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex, bool fRequested, const CDiskBlockPos* dbp, bool* fNewBlock) { if (fNewBlock) *fNewBlock = false; AssertLockHeld(cs_main); CBlockIndex *pindexDummy = NULL; CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy; if (!AcceptBlockHeader(block, state, chainparams, &pindex)) return false; // Try to process all requested blocks that we don't have, but only // process an unrequested block if it's new and has enough work to // advance our tip, and isn't too many blocks ahead. bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA; bool fHasMoreWork = (chainActive.Tip() ? pindex->nChainWork > chainActive.Tip()->nChainWork : true); // Blocks that are too out-of-order needlessly limit the effectiveness of // pruning, because pruning will not delete block files that contain any // blocks which are too close in height to the tip. Apply this test // regardless of whether pruning is enabled; it should generally be safe to // not process unrequested blocks. bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP)); // TODO: Decouple this function from the block download logic by removing fRequested // This requires some new chain datastructure to efficiently look up if a // block is in a chain leading to a candidate for best tip, despite not // being such a candidate itself. // TODO: deal better with return value and error conditions for duplicate // and unrequested blocks. if (fAlreadyHave) return true; if (!fRequested) { // If we didn't ask for it: if (pindex->nTx != 0) return true; // This is a previously-processed block that was pruned if (!fHasMoreWork) return true; // Don't process less-work chains if (fTooFarAhead) return true; // Block height is too high } if (fNewBlock) *fNewBlock = true; if (!CheckBlock(block, state, chainparams.GetConsensus(), GetAdjustedTime()) || !ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindex->pprev)) { if (state.IsInvalid() && !state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); } return error("%s: %s", __func__, FormatStateMessage(state)); } int nHeight = pindex->nHeight; // Write block to history file try { unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; if (dbp != NULL) blockPos = *dbp; if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != NULL)) return error("AcceptBlock(): FindBlockPos failed"); if (dbp == NULL) if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) AbortNode(state, "Failed to write block"); if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) return error("AcceptBlock(): ReceivedBlockTransactions failed"); } catch (const std::runtime_error& e) { return AbortNode(state, std::string("System error: ") + e.what()); } if (fCheckForPruning) FlushStateToDisk(state, FLUSH_STATE_NONE); // we just allocated more disk space for block files return true; } bool ProcessNewBlock(CValidationState& state, const CChainParams& chainparams, CNode* pfrom, const CBlock* pblock, bool fForceProcessing, const CDiskBlockPos* dbp) { { LOCK(cs_main); // Store to disk CBlockIndex *pindex = NULL; bool fNewBlock = false; bool ret = AcceptBlock(*pblock, state, chainparams, &pindex, fForceProcessing, dbp, &fNewBlock); if (pindex && pfrom) { mapBlockSource[pindex->GetBlockHash()] = pfrom->GetId(); if (fNewBlock) pfrom->nLastBlockTime = GetTime(); } CheckBlockIndex(chainparams.GetConsensus()); if (!ret) return error("%s: AcceptBlock FAILED", __func__); } NotifyHeaderTip(); if (!ActivateBestChain(state, chainparams, pblock)) return error("%s: ActivateBestChain failed", __func__); return true; } bool TestBlockValidity(CValidationState& state, const CChainParams& chainparams, const CBlock& block, CBlockIndex* pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot) { AssertLockHeld(cs_main); assert(pindexPrev && pindexPrev == chainActive.Tip()); if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, block.GetHash())) return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str()); CCoinsViewCache viewNew(pcoinsTip); CBlockIndex indexDummy(block); indexDummy.pprev = pindexPrev; indexDummy.nHeight = pindexPrev->nHeight + 1; // NOTE: CheckBlockHeader is called by CheckBlock if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime())) return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state)); if (!CheckBlock(block, state, chainparams.GetConsensus(), fCheckPOW, fCheckMerkleRoot)) return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); if (!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindexPrev)) return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state)); if (!ConnectBlock(block, state, &indexDummy, viewNew, chainparams, true)) return false; assert(state.IsValid()); return true; } /** * BLOCK PRUNING CODE */ /* Calculate the amount of disk space the block & undo files currently use */ uint64_t CalculateCurrentUsage() { uint64_t retval = 0; BOOST_FOREACH(const CBlockFileInfo &file, vinfoBlockFile) { retval += file.nSize + file.nUndoSize; } return retval; } /* Prune a block file (modify associated database entries)*/ void PruneOneBlockFile(const int fileNumber) { for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); ++it) { CBlockIndex* pindex = it->second; if (pindex->nFile == fileNumber) { pindex->nStatus &= ~BLOCK_HAVE_DATA; pindex->nStatus &= ~BLOCK_HAVE_UNDO; pindex->nFile = 0; pindex->nDataPos = 0; pindex->nUndoPos = 0; setDirtyBlockIndex.insert(pindex); // Prune from mapBlocksUnlinked -- any block we prune would have // to be downloaded again in order to consider its chain, at which // point it would be considered as a candidate for // mapBlocksUnlinked or setBlockIndexCandidates. std::pair::iterator, std::multimap::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev); while (range.first != range.second) { std::multimap::iterator _it = range.first; range.first++; if (_it->second == pindex) { mapBlocksUnlinked.erase(_it); } } } } vinfoBlockFile[fileNumber].SetNull(); setDirtyFileInfo.insert(fileNumber); } void UnlinkPrunedFiles(std::set& setFilesToPrune) { for (set::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) { CDiskBlockPos pos(*it, 0); boost::filesystem::remove(GetBlockPosFilename(pos, "blk")); boost::filesystem::remove(GetBlockPosFilename(pos, "rev")); LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it); } } /* Calculate the block/rev files that should be deleted to remain under target*/ void FindFilesToPrune(std::set& setFilesToPrune, uint64_t nPruneAfterHeight) { LOCK2(cs_main, cs_LastBlockFile); if (chainActive.Tip() == NULL || nPruneTarget == 0) { return; } if ((uint64_t)chainActive.Tip()->nHeight <= nPruneAfterHeight) { return; } unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP; uint64_t nCurrentUsage = CalculateCurrentUsage(); // We don't check to prune until after we've allocated new space for files // So we should leave a buffer under our target to account for another allocation // before the next pruning. uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE; uint64_t nBytesToPrune; int count=0; if (nCurrentUsage + nBuffer >= nPruneTarget) { for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) { nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize; if (vinfoBlockFile[fileNumber].nSize == 0) continue; if (nCurrentUsage + nBuffer < nPruneTarget) // are we below our target? break; // don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) continue; PruneOneBlockFile(fileNumber); // Queue up the files for removal setFilesToPrune.insert(fileNumber); nCurrentUsage -= nBytesToPrune; count++; } } LogPrint("prune", "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n", nPruneTarget/1024/1024, nCurrentUsage/1024/1024, ((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024, nLastBlockWeCanPrune, count); } bool CheckDiskSpace(uint64_t nAdditionalBytes) { uint64_t nFreeBytesAvailable = boost::filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) return AbortNode("Disk space is low!", _("Error: Disk space is low!")); return true; } FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly) { if (pos.IsNull()) return NULL; boost::filesystem::path path = GetBlockPosFilename(pos, prefix); boost::filesystem::create_directories(path.parent_path()); FILE* file = fopen(path.string().c_str(), "rb+"); if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+"); if (!file) { LogPrintf("Unable to open file %s\n", path.string()); return NULL; } if (pos.nPos) { if (fseek(file, pos.nPos, SEEK_SET)) { LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string()); fclose(file); return NULL; } } return file; } FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "blk", fReadOnly); } FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "rev", fReadOnly); } boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix) { return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile); } CBlockIndex * InsertBlockIndex(uint256 hash) { if (hash.IsNull()) return NULL; // Return existing BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) return (*mi).second; // Create new CBlockIndex* pindexNew = new CBlockIndex(); if (!pindexNew) throw runtime_error(std::string(__func__) + ": new CBlockIndex failed"); mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool static LoadBlockIndexDB(const CChainParams& chainparams) { if (!pblocktree->LoadBlockIndexGuts(InsertBlockIndex)) return false; boost::this_thread::interruption_point(); // Calculate nChainWork vector > vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight) { CBlockIndex* pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex); // We can link the chain of blocks for which we've received transactions at some point. // Pruned nodes may have deleted the block. if (pindex->nTx > 0) { if (pindex->pprev) { if (pindex->pprev->nChainTx) { pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx; } else { pindex->nChainTx = 0; mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex)); } } else { pindex->nChainTx = pindex->nTx; } } if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == NULL)) setBlockIndexCandidates.insert(pindex); if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork)) pindexBestInvalid = pindex; if (pindex->pprev) pindex->BuildSkip(); if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == NULL || CBlockIndexWorkComparator()(pindexBestHeader, pindex))) pindexBestHeader = pindex; } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); vinfoBlockFile.resize(nLastBlockFile + 1); LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile); for (int nFile = 0; nFile <= nLastBlockFile; nFile++) { pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]); } LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString()); for (int nFile = nLastBlockFile + 1; true; nFile++) { CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(nFile, info)) { vinfoBlockFile.push_back(info); } else { break; } } // Check presence of blk files LogPrintf("Checking all blk files are present...\n"); set setBlkDataFiles; BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; if (pindex->nStatus & BLOCK_HAVE_DATA) { setBlkDataFiles.insert(pindex->nFile); } } for (std::set::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) { CDiskBlockPos pos(*it, 0); if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) { return false; } } // Check whether we have ever pruned block & undo files pblocktree->ReadFlag("prunedblockfiles", fHavePruned); if (fHavePruned) LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n"); // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); fReindex |= fReindexing; // Check whether we have a transaction index pblocktree->ReadFlag("txindex", fTxIndex); LogPrintf("%s: transaction index %s\n", __func__, fTxIndex ? "enabled" : "disabled"); // Load pointer to end of best chain BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock()); if (it == mapBlockIndex.end()) return true; chainActive.SetTip(it->second); PruneBlockIndexCandidates(); LogPrintf("%s: hashBestChain=%s height=%d date=%s progress=%f\n", __func__, chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainparams.Checkpoints(), chainActive.Tip())); return true; } CVerifyDB::CVerifyDB() { uiInterface.ShowProgress(_("Verifying blocks..."), 0); } CVerifyDB::~CVerifyDB() { uiInterface.ShowProgress("", 100); } bool CVerifyDB::VerifyDB(const CChainParams& chainparams, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth) { LOCK(cs_main); if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL) return true; // Verify blocks in the best chain if (nCheckDepth <= 0) nCheckDepth = 1000000000; // suffices until the year 19000 if (nCheckDepth > chainActive.Height()) nCheckDepth = chainActive.Height(); nCheckLevel = std::max(0, std::min(4, nCheckLevel)); LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); CCoinsViewCache coins(coinsview); CBlockIndex* pindexState = chainActive.Tip(); CBlockIndex* pindexFailure = NULL; int nGoodTransactions = 0; CValidationState state; int reportDone = 0; LogPrintf("[0%%]..."); for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); int percentageDone = std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100)))); if (reportDone < percentageDone/10) { // report every 10% step LogPrintf("[%d%%]...", percentageDone); reportDone = percentageDone/10; } uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone); if (pindex->nHeight < chainActive.Height()-nCheckDepth) break; if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) { // If pruning, only go back as far as we have data. LogPrintf("VerifyDB(): block verification stopping at height %d (pruning, no data)\n", pindex->nHeight); break; } CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus())) return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(block, state, chainparams.GetConsensus())) return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__, pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state)); // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; CDiskBlockPos pos = pindex->GetUndoPos(); if (!pos.IsNull()) { if (!UndoReadFromDisk(undo, pos, pindex->pprev->GetBlockHash())) return error("VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); } } // check level 3: check for inconsistencies during memory-only disconnect of tip blocks if (nCheckLevel >= 3 && pindex == pindexState && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) { bool fClean = true; if (!DisconnectBlock(block, state, pindex, coins, &fClean)) return error("VerifyDB(): *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); pindexState = pindex->pprev; if (!fClean) { nGoodTransactions = 0; pindexFailure = pindex; } else nGoodTransactions += block.vtx.size(); } if (ShutdownRequested()) return true; } if (pindexFailure) return error("VerifyDB(): *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions); // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { CBlockIndex *pindex = pindexState; while (pindex != chainActive.Tip()) { boost::this_thread::interruption_point(); uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50)))); pindex = chainActive.Next(pindex); CBlock block; if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus())) return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); if (!ConnectBlock(block, state, pindex, coins, chainparams)) return error("VerifyDB(): *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } } LogPrintf("[DONE].\n"); LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions); return true; } bool RewindBlockIndex(const CChainParams& params) { LOCK(cs_main); int nHeight = 1; while (nHeight <= chainActive.Height()) { if (IsWitnessEnabled(chainActive[nHeight - 1], params.GetConsensus()) && !(chainActive[nHeight]->nStatus & BLOCK_OPT_WITNESS)) { break; } nHeight++; } // nHeight is now the height of the first insufficiently-validated block, or tipheight + 1 CValidationState state; CBlockIndex* pindex = chainActive.Tip(); while (chainActive.Height() >= nHeight) { if (fPruneMode && !(chainActive.Tip()->nStatus & BLOCK_HAVE_DATA)) { // If pruning, don't try rewinding past the HAVE_DATA point; // since older blocks can't be served anyway, there's // no need to walk further, and trying to DisconnectTip() // will fail (and require a needless reindex/redownload // of the blockchain). break; } if (!DisconnectTip(state, params, true)) { return error("RewindBlockIndex: unable to disconnect block at height %i", pindex->nHeight); } // Occasionally flush state to disk. if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) return false; } // Reduce validity flag and have-data flags. // We do this after actual disconnecting, otherwise we'll end up writing the lack of data // to disk before writing the chainstate, resulting in a failure to continue if interrupted. for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) { CBlockIndex* pindexIter = it->second; // Note: If we encounter an insufficiently validated block that // is on chainActive, it must be because we are a pruning node, and // this block or some successor doesn't HAVE_DATA, so we were unable to // rewind all the way. Blocks remaining on chainActive at this point // must not have their validity reduced. if (IsWitnessEnabled(pindexIter->pprev, params.GetConsensus()) && !(pindexIter->nStatus & BLOCK_OPT_WITNESS) && !chainActive.Contains(pindexIter)) { // Reduce validity pindexIter->nStatus = std::min(pindexIter->nStatus & BLOCK_VALID_MASK, BLOCK_VALID_TREE) | (pindexIter->nStatus & ~BLOCK_VALID_MASK); // Remove have-data flags. pindexIter->nStatus &= ~(BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO); // Remove storage location. pindexIter->nFile = 0; pindexIter->nDataPos = 0; pindexIter->nUndoPos = 0; // Remove various other things pindexIter->nTx = 0; pindexIter->nChainTx = 0; pindexIter->nSequenceId = 0; // Make sure it gets written. setDirtyBlockIndex.insert(pindexIter); // Update indexes setBlockIndexCandidates.erase(pindexIter); std::pair::iterator, std::multimap::iterator> ret = mapBlocksUnlinked.equal_range(pindexIter->pprev); while (ret.first != ret.second) { if (ret.first->second == pindexIter) { mapBlocksUnlinked.erase(ret.first++); } else { ++ret.first; } } } else if (pindexIter->IsValid(BLOCK_VALID_TRANSACTIONS) && pindexIter->nChainTx) { setBlockIndexCandidates.insert(pindexIter); } } PruneBlockIndexCandidates(); CheckBlockIndex(params.GetConsensus()); if (!FlushStateToDisk(state, FLUSH_STATE_ALWAYS)) { return false; } return true; } // May NOT be used after any connections are up as much // of the peer-processing logic assumes a consistent // block index state void UnloadBlockIndex() { LOCK(cs_main); setBlockIndexCandidates.clear(); chainActive.SetTip(NULL); pindexBestInvalid = NULL; pindexBestHeader = NULL; mempool.clear(); mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); mapBlocksUnlinked.clear(); vinfoBlockFile.clear(); nLastBlockFile = 0; nBlockSequenceId = 1; setDirtyBlockIndex.clear(); setDirtyFileInfo.clear(); versionbitscache.Clear(); for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) { warningcache[b].clear(); } BOOST_FOREACH(BlockMap::value_type& entry, mapBlockIndex) { delete entry.second; } mapBlockIndex.clear(); fHavePruned = false; } bool LoadBlockIndex(const CChainParams& chainparams) { // Load block index from databases if (!fReindex && !LoadBlockIndexDB(chainparams)) return false; return true; } bool InitBlockIndex(const CChainParams& chainparams) { LOCK(cs_main); // Check whether we're already initialized if (chainActive.Genesis() != NULL) return true; // Use the provided setting for -txindex in the new database fTxIndex = GetBoolArg("-txindex", DEFAULT_TXINDEX); pblocktree->WriteFlag("txindex", fTxIndex); LogPrintf("Initializing databases...\n"); // Only add the genesis block if not reindexing (in which case we reuse the one already on disk) if (!fReindex) { try { CBlock &block = const_cast(chainparams.GenesisBlock()); // Start new block file unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; CValidationState state; if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.GetBlockTime())) return error("LoadBlockIndex(): FindBlockPos failed"); if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) return error("LoadBlockIndex(): writing genesis block to disk failed"); CBlockIndex *pindex = AddToBlockIndex(block); if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) return error("LoadBlockIndex(): genesis block not accepted"); // Force a chainstate write so that when we VerifyDB in a moment, it doesn't check stale data return FlushStateToDisk(state, FLUSH_STATE_ALWAYS); } catch (const std::runtime_error& e) { return error("LoadBlockIndex(): failed to initialize block database: %s", e.what()); } } return true; } bool LoadExternalBlockFile(const CChainParams& chainparams, FILE* fileIn, CDiskBlockPos *dbp) { // Map of disk positions for blocks with unknown parent (only used for reindex) static std::multimap mapBlocksUnknownParent; int64_t nStart = GetTimeMillis(); int nLoaded = 0; try { // This takes over fileIn and calls fclose() on it in the CBufferedFile destructor CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SERIALIZED_SIZE, MAX_BLOCK_SERIALIZED_SIZE+8, SER_DISK, CLIENT_VERSION); uint64_t nRewind = blkdat.GetPos(); while (!blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); nRewind++; // start one byte further next time, in case of failure blkdat.SetLimit(); // remove former limit unsigned int nSize = 0; try { // locate a header unsigned char buf[CMessageHeader::MESSAGE_START_SIZE]; blkdat.FindByte(chainparams.MessageStart()[0]); nRewind = blkdat.GetPos()+1; blkdat >> FLATDATA(buf); if (memcmp(buf, chainparams.MessageStart(), CMessageHeader::MESSAGE_START_SIZE)) continue; // read size blkdat >> nSize; if (nSize < 80 || nSize > MAX_BLOCK_SERIALIZED_SIZE) continue; } catch (const std::exception&) { // no valid block header found; don't complain break; } try { // read block uint64_t nBlockPos = blkdat.GetPos(); if (dbp) dbp->nPos = nBlockPos; blkdat.SetLimit(nBlockPos + nSize); blkdat.SetPos(nBlockPos); CBlock block; blkdat >> block; nRewind = blkdat.GetPos(); // detect out of order blocks, and store them for later uint256 hash = block.GetHash(); if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) { LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(), block.hashPrevBlock.ToString()); if (dbp) mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp)); continue; } // process in case the block isn't known yet if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) { LOCK(cs_main); CValidationState state; if (AcceptBlock(block, state, chainparams, NULL, true, dbp, NULL)) nLoaded++; if (state.IsError()) break; } else if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex[hash]->nHeight % 1000 == 0) { LogPrint("reindex", "Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight); } // Activate the genesis block so normal node progress can continue if (hash == chainparams.GetConsensus().hashGenesisBlock) { CValidationState state; if (!ActivateBestChain(state, chainparams)) { break; } } NotifyHeaderTip(); // Recursively process earlier encountered successors of this block deque queue; queue.push_back(hash); while (!queue.empty()) { uint256 head = queue.front(); queue.pop_front(); std::pair::iterator, std::multimap::iterator> range = mapBlocksUnknownParent.equal_range(head); while (range.first != range.second) { std::multimap::iterator it = range.first; if (ReadBlockFromDisk(block, it->second, chainparams.GetConsensus())) { LogPrint("reindex", "%s: Processing out of order child %s of %s\n", __func__, block.GetHash().ToString(), head.ToString()); LOCK(cs_main); CValidationState dummy; if (AcceptBlock(block, dummy, chainparams, NULL, true, &it->second, NULL)) { nLoaded++; queue.push_back(block.GetHash()); } } range.first++; mapBlocksUnknownParent.erase(it); NotifyHeaderTip(); } } } catch (const std::exception& e) { LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what()); } } } catch (const std::runtime_error& e) { AbortNode(std::string("System error: ") + e.what()); } if (nLoaded > 0) LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart); return nLoaded > 0; } void static CheckBlockIndex(const Consensus::Params& consensusParams) { if (!fCheckBlockIndex) { return; } LOCK(cs_main); // During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain, // so we have the genesis block in mapBlockIndex but no active chain. (A few of the tests when // iterating the block tree require that chainActive has been initialized.) if (chainActive.Height() < 0) { assert(mapBlockIndex.size() <= 1); return; } // Build forward-pointing map of the entire block tree. std::multimap forward; for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) { forward.insert(std::make_pair(it->second->pprev, it->second)); } assert(forward.size() == mapBlockIndex.size()); std::pair::iterator,std::multimap::iterator> rangeGenesis = forward.equal_range(NULL); CBlockIndex *pindex = rangeGenesis.first->second; rangeGenesis.first++; assert(rangeGenesis.first == rangeGenesis.second); // There is only one index entry with parent NULL. // Iterate over the entire block tree, using depth-first search. // Along the way, remember whether there are blocks on the path from genesis // block being explored which are the first to have certain properties. size_t nNodes = 0; int nHeight = 0; CBlockIndex* pindexFirstInvalid = NULL; // Oldest ancestor of pindex which is invalid. CBlockIndex* pindexFirstMissing = NULL; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA. CBlockIndex* pindexFirstNeverProcessed = NULL; // Oldest ancestor of pindex for which nTx == 0. CBlockIndex* pindexFirstNotTreeValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not). CBlockIndex* pindexFirstNotTransactionsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not). CBlockIndex* pindexFirstNotChainValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not). CBlockIndex* pindexFirstNotScriptsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not). while (pindex != NULL) { nNodes++; if (pindexFirstInvalid == NULL && pindex->nStatus & BLOCK_FAILED_VALID) pindexFirstInvalid = pindex; if (pindexFirstMissing == NULL && !(pindex->nStatus & BLOCK_HAVE_DATA)) pindexFirstMissing = pindex; if (pindexFirstNeverProcessed == NULL && pindex->nTx == 0) pindexFirstNeverProcessed = pindex; if (pindex->pprev != NULL && pindexFirstNotTreeValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) pindexFirstNotTreeValid = pindex; if (pindex->pprev != NULL && pindexFirstNotTransactionsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) pindexFirstNotTransactionsValid = pindex; if (pindex->pprev != NULL && pindexFirstNotChainValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) pindexFirstNotChainValid = pindex; if (pindex->pprev != NULL && pindexFirstNotScriptsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) pindexFirstNotScriptsValid = pindex; // Begin: actual consistency checks. if (pindex->pprev == NULL) { // Genesis block checks. assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // Genesis block's hash must match. assert(pindex == chainActive.Genesis()); // The current active chain's genesis block must be this block. } if (pindex->nChainTx == 0) assert(pindex->nSequenceId <= 0); // nSequenceId can't be set positive for blocks that aren't linked (negative is used for preciousblock) // VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred). // HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred. if (!fHavePruned) { // If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0 assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0)); assert(pindexFirstMissing == pindexFirstNeverProcessed); } else { // If we have pruned, then we can only say that HAVE_DATA implies nTx > 0 if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0); } if (pindex->nStatus & BLOCK_HAVE_UNDO) assert(pindex->nStatus & BLOCK_HAVE_DATA); assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // This is pruning-independent. // All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to nChainTx being set. assert((pindexFirstNeverProcessed != NULL) == (pindex->nChainTx == 0)); // nChainTx != 0 is used to signal that all parent blocks have been processed (but may have been pruned). assert((pindexFirstNotTransactionsValid != NULL) == (pindex->nChainTx == 0)); assert(pindex->nHeight == nHeight); // nHeight must be consistent. assert(pindex->pprev == NULL || pindex->nChainWork >= pindex->pprev->nChainWork); // For every block except the genesis block, the chainwork must be larger than the parent's. assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // The pskip pointer must point back for all but the first 2 blocks. assert(pindexFirstNotTreeValid == NULL); // All mapBlockIndex entries must at least be TREE valid if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) assert(pindexFirstNotTreeValid == NULL); // TREE valid implies all parents are TREE valid if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) assert(pindexFirstNotChainValid == NULL); // CHAIN valid implies all parents are CHAIN valid if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) assert(pindexFirstNotScriptsValid == NULL); // SCRIPTS valid implies all parents are SCRIPTS valid if (pindexFirstInvalid == NULL) { // Checks for not-invalid blocks. assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); // The failed mask cannot be set for blocks without invalid parents. } if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == NULL) { if (pindexFirstInvalid == NULL) { // If this block sorts at least as good as the current tip and // is valid and we have all data for its parents, it must be in // setBlockIndexCandidates. chainActive.Tip() must also be there // even if some data has been pruned. if (pindexFirstMissing == NULL || pindex == chainActive.Tip()) { assert(setBlockIndexCandidates.count(pindex)); } // If some parent is missing, then it could be that this block was in // setBlockIndexCandidates but had to be removed because of the missing data. // In this case it must be in mapBlocksUnlinked -- see test below. } } else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates. assert(setBlockIndexCandidates.count(pindex) == 0); } // Check whether this block is in mapBlocksUnlinked. std::pair::iterator,std::multimap::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev); bool foundInUnlinked = false; while (rangeUnlinked.first != rangeUnlinked.second) { assert(rangeUnlinked.first->first == pindex->pprev); if (rangeUnlinked.first->second == pindex) { foundInUnlinked = true; break; } rangeUnlinked.first++; } if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != NULL && pindexFirstInvalid == NULL) { // If this block has block data available, some parent was never received, and has no invalid parents, it must be in mapBlocksUnlinked. assert(foundInUnlinked); } if (!(pindex->nStatus & BLOCK_HAVE_DATA)) assert(!foundInUnlinked); // Can't be in mapBlocksUnlinked if we don't HAVE_DATA if (pindexFirstMissing == NULL) assert(!foundInUnlinked); // We aren't missing data for any parent -- cannot be in mapBlocksUnlinked. if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == NULL && pindexFirstMissing != NULL) { // We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent. assert(fHavePruned); // We must have pruned. // This block may have entered mapBlocksUnlinked if: // - it has a descendant that at some point had more work than the // tip, and // - we tried switching to that descendant but were missing // data for some intermediate block between chainActive and the // tip. // So if this block is itself better than chainActive.Tip() and it wasn't in // setBlockIndexCandidates, then it must be in mapBlocksUnlinked. if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) { if (pindexFirstInvalid == NULL) { assert(foundInUnlinked); } } } // assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow // End: actual consistency checks. // Try descending into the first subnode. std::pair::iterator,std::multimap::iterator> range = forward.equal_range(pindex); if (range.first != range.second) { // A subnode was found. pindex = range.first->second; nHeight++; continue; } // This is a leaf node. // Move upwards until we reach a node of which we have not yet visited the last child. while (pindex) { // We are going to either move to a parent or a sibling of pindex. // If pindex was the first with a certain property, unset the corresponding variable. if (pindex == pindexFirstInvalid) pindexFirstInvalid = NULL; if (pindex == pindexFirstMissing) pindexFirstMissing = NULL; if (pindex == pindexFirstNeverProcessed) pindexFirstNeverProcessed = NULL; if (pindex == pindexFirstNotTreeValid) pindexFirstNotTreeValid = NULL; if (pindex == pindexFirstNotTransactionsValid) pindexFirstNotTransactionsValid = NULL; if (pindex == pindexFirstNotChainValid) pindexFirstNotChainValid = NULL; if (pindex == pindexFirstNotScriptsValid) pindexFirstNotScriptsValid = NULL; // Find our parent. CBlockIndex* pindexPar = pindex->pprev; // Find which child we just visited. std::pair::iterator,std::multimap::iterator> rangePar = forward.equal_range(pindexPar); while (rangePar.first->second != pindex) { assert(rangePar.first != rangePar.second); // Our parent must have at least the node we're coming from as child. rangePar.first++; } // Proceed to the next one. rangePar.first++; if (rangePar.first != rangePar.second) { // Move to the sibling. pindex = rangePar.first->second; break; } else { // Move up further. pindex = pindexPar; nHeight--; continue; } } } // Check that we actually traversed the entire map. assert(nNodes == forward.size()); } std::string GetWarnings(const std::string& strFor) { string strStatusBar; string strRPC; string strGUI; const string uiAlertSeperator = "
"; if (!CLIENT_VERSION_IS_RELEASE) { strStatusBar = "This is a pre-release test build - use at your own risk - do not use for mining or merchant applications"; strGUI = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications"); } if (GetBoolArg("-testsafemode", DEFAULT_TESTSAFEMODE)) strStatusBar = strRPC = strGUI = "testsafemode enabled"; // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { strStatusBar = strMiscWarning; strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + strMiscWarning; } if (fLargeWorkForkFound) { strStatusBar = strRPC = "Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues."; strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues."); } else if (fLargeWorkInvalidChainFound) { strStatusBar = strRPC = "Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade."; strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade."); } if (strFor == "gui") return strGUI; else if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings(): invalid parameter"); return "error"; } ////////////////////////////////////////////////////////////////////////////// // // blockchain -> download logic notification // PeerLogicValidation::PeerLogicValidation(CConnman* connmanIn) : connman(connmanIn) { // Initialize global variables that cannot be constructed at startup. recentRejects.reset(new CRollingBloomFilter(120000, 0.000001)); } void PeerLogicValidation::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { const int nNewHeight = pindexNew->nHeight; connman->SetBestHeight(nNewHeight); if (!fInitialDownload) { // Find the hashes of all blocks that weren't previously in the best chain. std::vector vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. // Rely on the peer's synchronization mechanism in that case. break; } } // Relay inventory, but don't relay old inventory during initial block download. connman->ForEachNode([nNewHeight, &vHashes](CNode* pnode) { if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 0)) { BOOST_REVERSE_FOREACH(const uint256& hash, vHashes) { pnode->PushBlockHash(hash); } } }); } nTimeBestReceived = GetTime(); } void PeerLogicValidation::BlockChecked(const CBlock& block, const CValidationState& state) { LOCK(cs_main); const uint256 hash(block.GetHash()); std::map::iterator it = mapBlockSource.find(hash); int nDoS = 0; if (state.IsInvalid(nDoS)) { if (it != mapBlockSource.end() && State(it->second)) { assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes CBlockReject reject = {(unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), hash}; State(it->second)->rejects.push_back(reject); if (nDoS > 0) Misbehaving(it->second, nDoS); } } if (it != mapBlockSource.end()) mapBlockSource.erase(it); } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(const CInv& inv) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { switch (inv.type) { case MSG_TX: case MSG_WITNESS_TX: { assert(recentRejects); if (chainActive.Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming valid, // or a double-spend. Reset the rejects filter and give those // txs a second chance. hashRecentRejectsChainTip = chainActive.Tip()->GetBlockHash(); recentRejects->reset(); } // Use pcoinsTip->HaveCoinsInCache as a quick approximation to exclude // requesting or processing some txs which have already been included in a block return recentRejects->contains(inv.hash) || mempool.exists(inv.hash) || mapOrphanTransactions.count(inv.hash) || pcoinsTip->HaveCoinsInCache(inv.hash); } case MSG_BLOCK: case MSG_WITNESS_BLOCK: return mapBlockIndex.count(inv.hash); } // Don't know what it is, just say we already got one return true; } static void RelayTransaction(const CTransaction& tx, CConnman& connman) { CInv inv(MSG_TX, tx.GetHash()); connman.ForEachNode([&inv](CNode* pnode) { pnode->PushInventory(inv); }); } static void RelayAddress(const CAddress& addr, bool fReachable, CConnman& connman) { int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s) // Relay to a limited number of other nodes // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the addrKnowns of the chosen nodes prevent repeats uint64_t hashAddr = addr.GetHash(); std::multimap mapMix; const CSipHasher hasher = connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY).Write(hashAddr << 32).Write((GetTime() + hashAddr) / (24*60*60)); FastRandomContext insecure_rand; auto sortfunc = [&mapMix, &hasher](CNode* pnode) { if (pnode->nVersion >= CADDR_TIME_VERSION) { uint64_t hashKey = CSipHasher(hasher).Write(pnode->id).Finalize(); mapMix.emplace(hashKey, pnode); } }; auto pushfunc = [&addr, &mapMix, &nRelayNodes, &insecure_rand] { for (auto mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) mi->second->PushAddress(addr, insecure_rand); }; connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc)); } void static ProcessGetData(CNode* pfrom, const Consensus::Params& consensusParams, CConnman& connman) { std::deque::iterator it = pfrom->vRecvGetData.begin(); unsigned int nMaxSendBufferSize = connman.GetSendBufferSize(); vector vNotFound; LOCK(cs_main); while (it != pfrom->vRecvGetData.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= nMaxSendBufferSize) break; const CInv &inv = *it; { boost::this_thread::interruption_point(); it++; if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK || inv.type == MSG_CMPCT_BLOCK || inv.type == MSG_WITNESS_BLOCK) { bool send = false; BlockMap::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { if (chainActive.Contains(mi->second)) { send = true; } else { static const int nOneMonth = 30 * 24 * 60 * 60; // To prevent fingerprinting attacks, only send blocks outside of the active // chain if they are valid, and no more than a month older (both in time, and in // best equivalent proof of work) than the best header chain we know about. send = mi->second->IsValid(BLOCK_VALID_SCRIPTS) && (pindexBestHeader != NULL) && (pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() < nOneMonth) && (GetBlockProofEquivalentTime(*pindexBestHeader, *mi->second, *pindexBestHeader, consensusParams) < nOneMonth); if (!send) { LogPrintf("%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom->GetId()); } } } // disconnect node in case we have reached the outbound limit for serving historical blocks // never disconnect whitelisted nodes static const int nOneWeek = 7 * 24 * 60 * 60; // assume > 1 week = historical if (send && connman.OutboundTargetReached(true) && ( ((pindexBestHeader != NULL) && (pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() > nOneWeek)) || inv.type == MSG_FILTERED_BLOCK) && !pfrom->fWhitelisted) { LogPrint("net", "historical block serving limit reached, disconnect peer=%d\n", pfrom->GetId()); //disconnect node pfrom->fDisconnect = true; send = false; } // Pruned nodes may have deleted the block, so check whether // it's available before trying to send. if (send && (mi->second->nStatus & BLOCK_HAVE_DATA)) { // Send block from disk CBlock block; if (!ReadBlockFromDisk(block, (*mi).second, consensusParams)) assert(!"cannot load block from disk"); if (inv.type == MSG_BLOCK) connman.PushMessageWithFlag(pfrom, SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, block); else if (inv.type == MSG_WITNESS_BLOCK) connman.PushMessage(pfrom, NetMsgType::BLOCK, block); else if (inv.type == MSG_FILTERED_BLOCK) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(block, *pfrom->pfilter); } } if (sendMerkleBlock) { connman.PushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock); // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see // This avoids hurting performance by pointlessly requiring a round-trip // Note that there is currently no way for a node to request any single transactions we didn't send here - // they must either disconnect and retry or request the full block. // Thus, the protocol spec specified allows for us to provide duplicate txn here, // however we MUST always provide at least what the remote peer needs typedef std::pair PairType; BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn) connman.PushMessageWithFlag(pfrom, SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::TX, block.vtx[pair.first]); } // else // no response } else if (inv.type == MSG_CMPCT_BLOCK) { // If a peer is asking for old blocks, we're almost guaranteed // they wont have a useful mempool to match against a compact block, // and we don't feel like constructing the object for them, so // instead we respond with the full, non-compact block. bool fPeerWantsWitness = State(pfrom->GetId())->fWantsCmpctWitness; if (CanDirectFetch(consensusParams) && mi->second->nHeight >= chainActive.Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(block, fPeerWantsWitness); connman.PushMessageWithFlag(pfrom, fPeerWantsWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::CMPCTBLOCK, cmpctblock); } else connman.PushMessageWithFlag(pfrom, fPeerWantsWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, block); } // Trigger the peer node to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash())); connman.PushMessage(pfrom, NetMsgType::INV, vInv); pfrom->hashContinue.SetNull(); } } } else if (inv.type == MSG_TX || inv.type == MSG_WITNESS_TX) { // Send stream from relay memory bool push = false; auto mi = mapRelay.find(inv.hash); if (mi != mapRelay.end()) { connman.PushMessageWithFlag(pfrom, inv.type == MSG_TX ? SERIALIZE_TRANSACTION_NO_WITNESS : 0, NetMsgType::TX, *mi->second); push = true; } else if (pfrom->timeLastMempoolReq) { auto txinfo = mempool.info(inv.hash); // To protect privacy, do not answer getdata using the mempool when // that TX couldn't have been INVed in reply to a MEMPOOL request. if (txinfo.tx && txinfo.nTime <= pfrom->timeLastMempoolReq) { connman.PushMessageWithFlag(pfrom, inv.type == MSG_TX ? SERIALIZE_TRANSACTION_NO_WITNESS : 0, NetMsgType::TX, *txinfo.tx); push = true; } } if (!push) { vNotFound.push_back(inv); } } // Track requests for our stuff. GetMainSignals().Inventory(inv.hash); if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK || inv.type == MSG_CMPCT_BLOCK || inv.type == MSG_WITNESS_BLOCK) break; } } pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it doesn't // have to wait around forever. Currently only SPV clients actually care // about this message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want to // do that because they want to know about (and store and rebroadcast and // risk analyze) the dependencies of transactions relevant to them, without // having to download the entire memory pool. connman.PushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound); } } uint32_t GetFetchFlags(CNode* pfrom, CBlockIndex* pprev, const Consensus::Params& chainparams) { uint32_t nFetchFlags = 0; if ((pfrom->GetLocalServices() & NODE_WITNESS) && State(pfrom->GetId())->fHaveWitness) { nFetchFlags |= MSG_WITNESS_FLAG; } return nFetchFlags; } bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived, const CChainParams& chainparams, CConnman& connman) { unsigned int nMaxSendBufferSize = connman.GetSendBufferSize(); LogPrint("net", "received: %s (%u bytes) peer=%d\n", SanitizeString(strCommand), vRecv.size(), pfrom->id); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (!(pfrom->GetLocalServices() & NODE_BLOOM) && (strCommand == NetMsgType::FILTERLOAD || strCommand == NetMsgType::FILTERADD || strCommand == NetMsgType::FILTERCLEAR)) { if (pfrom->nVersion >= NO_BLOOM_VERSION) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 100); return false; } else { pfrom->fDisconnect = true; return false; } } if (strCommand == NetMsgType::VERSION) { // Feeler connections exist only to verify if address is online. if (pfrom->fFeeler) { assert(pfrom->fInbound == false); pfrom->fDisconnect = true; } // Each connection can only send one version message if (pfrom->nVersion != 0) { connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_DUPLICATE, string("Duplicate version message")); LOCK(cs_main); Misbehaving(pfrom->GetId(), 1); return false; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; uint64_t nServiceInt; vRecv >> pfrom->nVersion >> nServiceInt >> nTime >> addrMe; pfrom->nServices = ServiceFlags(nServiceInt); if (!pfrom->fInbound) { connman.SetServices(pfrom->addr, pfrom->nServices); } if (pfrom->nServicesExpected & ~pfrom->nServices) { LogPrint("net", "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom->id, pfrom->nServices, pfrom->nServicesExpected); connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_NONSTANDARD, strprintf("Expected to offer services %08x", pfrom->nServicesExpected)); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrintf("peer=%d using obsolete version %i; disconnecting\n", pfrom->id, pfrom->nVersion); connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_OBSOLETE, strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION)); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (!vRecv.empty()) vRecv >> addrFrom >> nNonce; if (!vRecv.empty()) { vRecv >> LIMITED_STRING(pfrom->strSubVer, MAX_SUBVERSION_LENGTH); pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer); } if (!vRecv.empty()) { vRecv >> pfrom->nStartingHeight; } { LOCK(pfrom->cs_filter); if (!vRecv.empty()) vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message else pfrom->fRelayTxes = true; } // Disconnect if we connected to ourself if (pfrom->fInbound && !connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString()); pfrom->fDisconnect = true; return true; } pfrom->addrLocal = addrMe; if (pfrom->fInbound && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Be shy and don't send version until we hear if (pfrom->fInbound) PushNodeVersion(pfrom, connman, GetAdjustedTime()); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); if((pfrom->nServices & NODE_WITNESS)) { LOCK(cs_main); State(pfrom->GetId())->fHaveWitness = true; } // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); UpdatePreferredDownload(pfrom, State(pfrom->GetId())); } // Change version connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::VERACK); pfrom->SetSendVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (fListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr, pfrom->GetLocalServices()); FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint("net", "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom->PushAddress(addr, insecure_rand); } else if (IsPeerAddrLocalGood(pfrom)) { addr.SetIP(pfrom->addrLocal); LogPrint("net", "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom->PushAddress(addr, insecure_rand); } } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || connman.GetAddressCount() < 1000) { connman.PushMessage(pfrom, NetMsgType::GETADDR); pfrom->fGetAddr = true; } connman.MarkAddressGood(pfrom->addr); } pfrom->fSuccessfullyConnected = true; string remoteAddr; if (fLogIPs) remoteAddr = ", peeraddr=" + pfrom->addr.ToString(); LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s\n", pfrom->cleanSubVer, pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), pfrom->id, remoteAddr); int64_t nTimeOffset = nTime - GetTime(); pfrom->nTimeOffset = nTimeOffset; AddTimeData(pfrom->addr, nTimeOffset); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else LOCK(cs_main); Misbehaving(pfrom->GetId(), 1); return false; } else if (strCommand == NetMsgType::VERACK) { pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); // Mark this node as currently connected, so we update its timestamp later. if (pfrom->fNetworkNode) { LOCK(cs_main); State(pfrom->GetId())->fCurrentlyConnected = true; } if (pfrom->nVersion >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) connman.PushMessage(pfrom, NetMsgType::SENDHEADERS); } if (pfrom->nVersion >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 or 2 cmpctblocks // However, we do not request new block announcements using // cmpctblock messages. // We send this to non-NODE NETWORK peers as well, because // they may wish to request compact blocks from us bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 2; if (pfrom->GetLocalServices() & NODE_WITNESS) connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion); nCMPCTBLOCKVersion = 1; connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion); } } else if (strCommand == NetMsgType::ADDR) { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && connman.GetAddressCount() > 1000) return true; if (vAddr.size() > 1000) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 20); return error("message addr size() = %u", vAddr.size()); } // Store the new addresses vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { boost::this_thread::interruption_point(); if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES) continue; if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(addr, fReachable, connman); } // Do not store addresses outside our network if (fReachable) vAddrOk.push_back(addr); } connman.AddNewAddresses(vAddrOk, pfrom->addr, 2 * 60 * 60); if (vAddr.size() < 1000) pfrom->fGetAddr = false; if (pfrom->fOneShot) pfrom->fDisconnect = true; } else if (strCommand == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom->GetId())->fPreferHeaders = true; } else if (strCommand == NetMsgType::SENDCMPCT) { bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 0; vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion; if (nCMPCTBLOCKVersion == 1 || ((pfrom->GetLocalServices() & NODE_WITNESS) && nCMPCTBLOCKVersion == 2)) { LOCK(cs_main); // fProvidesHeaderAndIDs is used to "lock in" version of compact blocks we send (fWantsCmpctWitness) if (!State(pfrom->GetId())->fProvidesHeaderAndIDs) { State(pfrom->GetId())->fProvidesHeaderAndIDs = true; State(pfrom->GetId())->fWantsCmpctWitness = nCMPCTBLOCKVersion == 2; } if (State(pfrom->GetId())->fWantsCmpctWitness == (nCMPCTBLOCKVersion == 2)) // ignore later version announces State(pfrom->GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK; if (!State(pfrom->GetId())->fSupportsDesiredCmpctVersion) { if (pfrom->GetLocalServices() & NODE_WITNESS) State(pfrom->GetId())->fSupportsDesiredCmpctVersion = (nCMPCTBLOCKVersion == 2); else State(pfrom->GetId())->fSupportsDesiredCmpctVersion = (nCMPCTBLOCKVersion == 1); } } } else if (strCommand == NetMsgType::INV) { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 20); return error("message inv size() = %u", vInv.size()); } bool fBlocksOnly = !fRelayTxes; // Allow whitelisted peers to send data other than blocks in blocks only mode if whitelistrelay is true if (pfrom->fWhitelisted && GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) fBlocksOnly = false; LOCK(cs_main); uint32_t nFetchFlags = GetFetchFlags(pfrom, chainActive.Tip(), chainparams.GetConsensus()); std::vector vToFetch; for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) { CInv &inv = vInv[nInv]; boost::this_thread::interruption_point(); bool fAlreadyHave = AlreadyHave(inv); LogPrint("net", "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->id); if (inv.type == MSG_TX) { inv.type |= nFetchFlags; } if (inv.type == MSG_BLOCK) { UpdateBlockAvailability(pfrom->GetId(), inv.hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(inv.hash)) { // First request the headers preceding the announced block. In the normal fully-synced // case where a new block is announced that succeeds the current tip (no reorganization), // there are no such headers. // Secondly, and only when we are close to being synced, we request the announced block directly, // to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the // time the block arrives, the header chain leading up to it is already validated. Not // doing this will result in the received block being rejected as an orphan in case it is // not a direct successor. connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), inv.hash); CNodeState *nodestate = State(pfrom->GetId()); if (CanDirectFetch(chainparams.GetConsensus()) && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER && (!IsWitnessEnabled(chainActive.Tip(), chainparams.GetConsensus()) || State(pfrom->GetId())->fHaveWitness)) { inv.type |= nFetchFlags; if (nodestate->fSupportsDesiredCmpctVersion) vToFetch.push_back(CInv(MSG_CMPCT_BLOCK, inv.hash)); else vToFetch.push_back(inv); // Mark block as in flight already, even though the actual "getdata" message only goes out // later (within the same cs_main lock, though). MarkBlockAsInFlight(pfrom->GetId(), inv.hash, chainparams.GetConsensus()); } LogPrint("net", "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, inv.hash.ToString(), pfrom->id); } } else { pfrom->AddInventoryKnown(inv); if (fBlocksOnly) LogPrint("net", "transaction (%s) inv sent in violation of protocol peer=%d\n", inv.hash.ToString(), pfrom->id); else if (!fAlreadyHave && !fImporting && !fReindex && !IsInitialBlockDownload()) pfrom->AskFor(inv); } // Track requests for our stuff GetMainSignals().Inventory(inv.hash); if (pfrom->nSendSize > (nMaxSendBufferSize * 2)) { Misbehaving(pfrom->GetId(), 50); return error("send buffer size() = %u", pfrom->nSendSize); } } if (!vToFetch.empty()) connman.PushMessage(pfrom, NetMsgType::GETDATA, vToFetch); } else if (strCommand == NetMsgType::GETDATA) { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 20); return error("message getdata size() = %u", vInv.size()); } if (fDebug || (vInv.size() != 1)) LogPrint("net", "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->id); if ((fDebug && vInv.size() > 0) || (vInv.size() == 1)) LogPrint("net", "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->id); pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(pfrom, chainparams.GetConsensus(), connman); } else if (strCommand == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); // Find the last block the caller has in the main chain CBlockIndex* pindex = FindForkInGlobalIndex(chainActive, locator); // Send the rest of the chain if (pindex) pindex = chainActive.Next(pindex); int nLimit = 500; LogPrint("net", "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom->id); for (; pindex; pindex = chainActive.Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are likely to still have // for some reasonable time window (1 hour) that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= chainActive.Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint("net", " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; LOCK(cs_main); BlockMap::iterator it = mapBlockIndex.find(req.blockhash); if (it == mapBlockIndex.end() || !(it->second->nStatus & BLOCK_HAVE_DATA)) { LogPrintf("Peer %d sent us a getblocktxn for a block we don't have", pfrom->id); return true; } if (it->second->nHeight < chainActive.Height() - MAX_BLOCKTXN_DEPTH) { LogPrint("net", "Peer %d sent us a getblocktxn for a block > %i deep", pfrom->id, MAX_BLOCKTXN_DEPTH); return true; } CBlock block; assert(ReadBlockFromDisk(block, it->second, chainparams.GetConsensus())); BlockTransactions resp(req); for (size_t i = 0; i < req.indexes.size(); i++) { if (req.indexes[i] >= block.vtx.size()) { Misbehaving(pfrom->GetId(), 100); LogPrintf("Peer %d sent us a getblocktxn with out-of-bounds tx indices", pfrom->id); return true; } resp.txn[i] = block.vtx[req.indexes[i]]; } connman.PushMessageWithFlag(pfrom, State(pfrom->GetId())->fWantsCmpctWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCKTXN, resp); } else if (strCommand == NetMsgType::GETHEADERS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); if (IsInitialBlockDownload() && !pfrom->fWhitelisted) { LogPrint("net", "Ignoring getheaders from peer=%d because node is in initial block download\n", pfrom->id); return true; } CNodeState *nodestate = State(pfrom->GetId()); CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block BlockMap::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = FindForkInGlobalIndex(chainActive, locator); if (pindex) pindex = chainActive.Next(pindex); } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint("net", "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom->id); for (; pindex; pindex = chainActive.Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } // pindex can be NULL either if we sent chainActive.Tip() OR // if our peer has chainActive.Tip() (and thus we are sending an empty // headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. nodestate->pindexBestHeaderSent = pindex ? pindex : chainActive.Tip(); connman.PushMessage(pfrom, NetMsgType::HEADERS, vHeaders); } else if (strCommand == NetMsgType::TX) { // Stop processing the transaction early if // We are in blocks only mode and peer is either not whitelisted or whitelistrelay is off if (!fRelayTxes && (!pfrom->fWhitelisted || !GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY))) { LogPrint("net", "transaction sent in violation of protocol peer=%d\n", pfrom->id); return true; } deque vWorkQueue; vector vEraseQueue; CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); LOCK(cs_main); bool fMissingInputs = false; CValidationState state; pfrom->setAskFor.erase(inv.hash); mapAlreadyAskedFor.erase(inv.hash); if (!AlreadyHave(inv) && AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs)) { mempool.check(pcoinsTip); RelayTransaction(tx, connman); for (unsigned int i = 0; i < tx.vout.size(); i++) { vWorkQueue.emplace_back(inv.hash, i); } pfrom->nLastTXTime = GetTime(); LogPrint("mempool", "AcceptToMemoryPool: peer=%d: accepted %s (poolsz %u txn, %u kB)\n", pfrom->id, tx.GetHash().ToString(), mempool.size(), mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this one set setMisbehaving; while (!vWorkQueue.empty()) { auto itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue.front()); vWorkQueue.pop_front(); if (itByPrev == mapOrphanTransactionsByPrev.end()) continue; for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction& orphanTx = (*mi)->second.tx; const uint256& orphanHash = orphanTx.GetHash(); NodeId fromPeer = (*mi)->second.fromPeer; bool fMissingInputs2 = false; // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan // resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get // anyone relaying LegitTxX banned) CValidationState stateDummy; if (setMisbehaving.count(fromPeer)) continue; if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2)) { LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString()); RelayTransaction(orphanTx, connman); for (unsigned int i = 0; i < orphanTx.vout.size(); i++) { vWorkQueue.emplace_back(orphanHash, i); } vEraseQueue.push_back(orphanHash); } else if (!fMissingInputs2) { int nDos = 0; if (stateDummy.IsInvalid(nDos) && nDos > 0) { // Punish peer that gave us an invalid orphan tx Misbehaving(fromPeer, nDos); setMisbehaving.insert(fromPeer); LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString()); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee/priority LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString()); vEraseQueue.push_back(orphanHash); if (orphanTx.wit.IsNull() && !stateDummy.CorruptionPossible()) { // Do not use rejection cache for witness transactions or // witness-stripped transactions, as they can have been malleated. // See https://github.com/bitcoin/bitcoin/issues/8279 for details. assert(recentRejects); recentRejects->insert(orphanHash); } } mempool.check(pcoinsTip); } } BOOST_FOREACH(uint256 hash, vEraseQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (recentRejects->contains(txin.prevout.hash)) { fRejectedParents = true; break; } } if (!fRejectedParents) { BOOST_FOREACH(const CTxIn& txin, tx.vin) { CInv _inv(MSG_TX, txin.prevout.hash); pfrom->AddInventoryKnown(_inv); if (!AlreadyHave(_inv)) pfrom->AskFor(_inv); } AddOrphanTx(tx, pfrom->GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow unbounded unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted); } else { LogPrint("mempool", "not keeping orphan with rejected parents %s\n",tx.GetHash().ToString()); } } else { if (tx.wit.IsNull() && !state.CorruptionPossible()) { // Do not use rejection cache for witness transactions or // witness-stripped transactions, as they can have been malleated. // See https://github.com/bitcoin/bitcoin/issues/8279 for details. assert(recentRejects); recentRejects->insert(tx.GetHash()); } if (pfrom->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) { // Always relay transactions received from whitelisted peers, even // if they were already in the mempool or rejected from it due // to policy, allowing the node to function as a gateway for // nodes hidden behind it. // // Never relay transactions that we would assign a non-zero DoS // score for, as we expect peers to do the same with us in that // case. int nDoS = 0; if (!state.IsInvalid(nDoS) || nDoS == 0) { LogPrintf("Force relaying tx %s from whitelisted peer=%d\n", tx.GetHash().ToString(), pfrom->id); RelayTransaction(tx, connman); } else { LogPrintf("Not relaying invalid transaction %s from whitelisted peer=%d (%s)\n", tx.GetHash().ToString(), pfrom->id, FormatStateMessage(state)); } } } int nDoS = 0; if (state.IsInvalid(nDoS)) { LogPrint("mempoolrej", "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom->id, FormatStateMessage(state)); if (state.GetRejectCode() < REJECT_INTERNAL) // Never send AcceptToMemoryPool's internal codes over P2P connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), inv.hash); if (nDoS > 0) { Misbehaving(pfrom->GetId(), nDoS); } } } else if (strCommand == NetMsgType::CMPCTBLOCK && !fImporting && !fReindex) // Ignore blocks received while importing { CBlockHeaderAndShortTxIDs cmpctblock; vRecv >> cmpctblock; LOCK(cs_main); if (mapBlockIndex.find(cmpctblock.header.hashPrevBlock) == mapBlockIndex.end()) { // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers if (!IsInitialBlockDownload()) connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), uint256()); return true; } CBlockIndex *pindex = NULL; CValidationState state; if (!AcceptBlockHeader(cmpctblock.header, state, chainparams, &pindex)) { int nDoS; if (state.IsInvalid(nDoS)) { if (nDoS > 0) Misbehaving(pfrom->GetId(), nDoS); LogPrintf("Peer %d sent us invalid header via cmpctblock\n", pfrom->id); return true; } } // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom->GetId(), pindex->GetBlockHash()); std::map::iterator> >::iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here return true; if (pindex->nChainWork <= chainActive.Tip()->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool will probably be useless // so we just grab the block via normal getdata std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash()); connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv); } return true; } // If we're not close to tip yet, give up and let parallel block fetch work its magic if (!fAlreadyInFlight && !CanDirectFetch(chainparams.GetConsensus())) return true; CNodeState *nodestate = State(pfrom->GetId()); if (IsWitnessEnabled(pindex->pprev, chainparams.GetConsensus()) && !nodestate->fSupportsDesiredCmpctVersion) { // Don't bother trying to process compact blocks from v1 peers // after segwit activates. return true; } // We want to be a bit conservative just to be extra careful about DoS // possibilities in compact block processing... if (pindex->nHeight <= chainActive.Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom->GetId())) { list::iterator *queuedBlockIt = NULL; if (!MarkBlockAsInFlight(pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&mempool)); else { // The block was already in flight using compact blocks from the same peer LogPrint("net", "Peer sent us compact block we were already syncing!\n"); return true; } } PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock); if (status == READ_STATUS_INVALID) { MarkBlockAsReceived(pindex->GetBlockHash()); // Reset in-flight state in case of whitelist Misbehaving(pfrom->GetId(), 100); LogPrintf("Peer %d sent us invalid compact block\n", pfrom->id); return true; } else if (status == READ_STATUS_FAILED) { // Duplicate txindexes, the block is now in-flight, so just request it std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash()); connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv); return true; } if (!fAlreadyInFlight && mapBlocksInFlight.size() == 1 && pindex->pprev->IsValid(BLOCK_VALID_CHAIN)) { // We seem to be rather well-synced, so it appears pfrom was the first to provide us // with this block! Let's get them to announce using compact blocks in the future. MaybeSetPeerAsAnnouncingHeaderAndIDs(nodestate, pfrom, connman); } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) req.indexes.push_back(i); } if (req.indexes.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); blockTxnMsg << txn; return ProcessMessage(pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, nTimeReceived, chainparams, connman); } else { req.blockhash = pindex->GetBlockHash(); connman.PushMessage(pfrom, NetMsgType::GETBLOCKTXN, req); } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so our // mempool will probably be useless - request the block normally std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash()); connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv); return true; } else { // If this was an announce-cmpctblock, we want the same treatment as a header message // Dirty hack to process as if it were just a headers message (TODO: move message handling into their own functions) std::vector headers; headers.push_back(cmpctblock.header); CDataStream vHeadersMsg(SER_NETWORK, PROTOCOL_VERSION); vHeadersMsg << headers; return ProcessMessage(pfrom, NetMsgType::HEADERS, vHeadersMsg, nTimeReceived, chainparams, connman); } } } else if (strCommand == NetMsgType::BLOCKTXN && !fImporting && !fReindex) // Ignore blocks received while importing { BlockTransactions resp; vRecv >> resp; CBlock block; bool fBlockRead = false; { LOCK(cs_main); map::iterator> >::iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom->GetId()) { LogPrint("net", "Peer %d sent us block transactions for block we weren't expecting\n", pfrom->id); return true; } PartiallyDownloadedBlock& partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(block, resp.txn); if (status == READ_STATUS_INVALID) { MarkBlockAsReceived(resp.blockhash); // Reset in-flight state in case of whitelist Misbehaving(pfrom->GetId(), 100); LogPrintf("Peer %d sent us invalid compact block/non-matching block transactions\n", pfrom->id); return true; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector invs; invs.push_back(CInv(MSG_BLOCK | GetFetchFlags(pfrom, chainActive.Tip(), chainparams.GetConsensus()), resp.blockhash)); connman.PushMessage(pfrom, NetMsgType::GETDATA, invs); } else { MarkBlockAsReceived(resp.blockhash); // it is now an empty pointer fBlockRead = true; } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { CValidationState state; // Since we requested this block (it was in mapBlocksInFlight), force it to be processed, // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc) ProcessNewBlock(state, chainparams, pfrom, &block, true, NULL); int nDoS; if (state.IsInvalid(nDoS)) { assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), block.GetHash()); if (nDoS > 0) { LOCK(cs_main); Misbehaving(pfrom->GetId(), nDoS); } } } } else if (strCommand == NetMsgType::HEADERS && !fImporting && !fReindex) // Ignore headers received while importing { std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 20); return error("headers message size = %u", nCount); } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; ReadCompactSize(vRecv); // ignore tx count; assume it is 0. } { LOCK(cs_main); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return true; } CNodeState *nodestate = State(pfrom->GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (mapBlockIndex.find(headers[0].hashPrevBlock) == mapBlockIndex.end() && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), uint256()); LogPrint("net", "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight, pfrom->id, nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we // eventually get the headers - even from a different peer - // we can use this peer to download. UpdateBlockAvailability(pfrom->GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { Misbehaving(pfrom->GetId(), 20); } return true; } CBlockIndex *pindexLast = NULL; BOOST_FOREACH(const CBlockHeader& header, headers) { CValidationState state; if (pindexLast != NULL && header.hashPrevBlock != pindexLast->GetBlockHash()) { Misbehaving(pfrom->GetId(), 20); return error("non-continuous headers sequence"); } if (!AcceptBlockHeader(header, state, chainparams, &pindexLast)) { int nDoS; if (state.IsInvalid(nDoS)) { if (nDoS > 0) Misbehaving(pfrom->GetId(), nDoS); return error("invalid header received"); } } } if (nodestate->nUnconnectingHeaders > 0) { LogPrint("net", "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom->id, nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash()); if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more headers. // TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue // from there instead. LogPrint("net", "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->id, pfrom->nStartingHeight); connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexLast), uint256()); } bool fCanDirectFetch = CanDirectFetch(chainparams.GetConsensus()); // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (fCanDirectFetch && pindexLast->IsValid(BLOCK_VALID_TREE) && chainActive.Tip()->nChainWork <= pindexLast->nChainWork) { vector vToFetch; CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to a limit. while (pindexWalk && !chainActive.Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) && !mapBlocksInFlight.count(pindexWalk->GetBlockHash()) && (!IsWitnessEnabled(pindexWalk->pprev, chainparams.GetConsensus()) || State(pfrom->GetId())->fHaveWitness)) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!chainActive.Contains(pindexWalk)) { LogPrint("net", "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { vector vGetData; // Download as much as possible, from earliest to latest. BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vToFetch) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } uint32_t nFetchFlags = GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()); vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash())); MarkBlockAsInFlight(pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex); LogPrint("net", "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom->id); } if (vGetData.size() > 1) { LogPrint("net", "Downloading blocks toward %s (%d) via headers direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BLOCK_VALID_CHAIN)) { // We seem to be rather well-synced, so it appears pfrom was the first to provide us // with this block! Let's get them to announce using compact blocks in the future. MaybeSetPeerAsAnnouncingHeaderAndIDs(nodestate, pfrom, connman); // In any case, we want to download using a compact block, not a regular one vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } connman.PushMessage(pfrom, NetMsgType::GETDATA, vGetData); } } } } NotifyHeaderTip(); } else if (strCommand == NetMsgType::BLOCK && !fImporting && !fReindex) // Ignore blocks received while importing { CBlock block; vRecv >> block; LogPrint("net", "received block %s peer=%d\n", block.GetHash().ToString(), pfrom->id); CValidationState state; // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. // Such an unrequested block may still be processed, subject to the // conditions in AcceptBlock(). bool forceProcessing = pfrom->fWhitelisted && !IsInitialBlockDownload(); { LOCK(cs_main); // Also always process if we requested the block explicitly, as we may // need it even though it is not a candidate for a new best tip. forceProcessing |= MarkBlockAsReceived(block.GetHash()); } ProcessNewBlock(state, chainparams, pfrom, &block, forceProcessing, NULL); int nDoS; if (state.IsInvalid(nDoS)) { assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), block.GetHash()); if (nDoS > 0) { LOCK(cs_main); Misbehaving(pfrom->GetId(), nDoS); } } } else if (strCommand == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was introduced // to prevent a fingerprinting attack: an attacker can send specific fake addresses // to users' AddrMan and later request them by sending getaddr messages. // Making nodes which are behind NAT and can only make outgoing connections ignore // the getaddr message mitigates the attack. if (!pfrom->fInbound) { LogPrint("net", "Ignoring \"getaddr\" from outbound connection. peer=%d\n", pfrom->id); return true; } // Only send one GetAddr response per connection to reduce resource waste // and discourage addr stamping of INV announcements. if (pfrom->fSentAddr) { LogPrint("net", "Ignoring repeated \"getaddr\". peer=%d\n", pfrom->id); return true; } pfrom->fSentAddr = true; pfrom->vAddrToSend.clear(); vector vAddr = connman.GetAddresses(); FastRandomContext insecure_rand; BOOST_FOREACH(const CAddress &addr, vAddr) pfrom->PushAddress(addr, insecure_rand); } else if (strCommand == NetMsgType::MEMPOOL) { if (!(pfrom->GetLocalServices() & NODE_BLOOM) && !pfrom->fWhitelisted) { LogPrint("net", "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom->GetId()); pfrom->fDisconnect = true; return true; } if (connman.OutboundTargetReached(false) && !pfrom->fWhitelisted) { LogPrint("net", "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom->GetId()); pfrom->fDisconnect = true; return true; } LOCK(pfrom->cs_inventory); pfrom->fSendMempool = true; } else if (strCommand == NetMsgType::PING) { if (pfrom->nVersion > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful features: // // 1) A remote node can quickly check if the connection is operational // 2) Remote nodes can measure the latency of the network thread. If this node // is overloaded it won't respond to pings quickly and the remote node can // avoid sending us more work, like chain download requests. // // The nonce stops the remote getting confused between different pings: without // it, if the remote node sends a ping once per second and this node takes 5 // seconds to respond to each, the 5th ping the remote sends would appear to // return very quickly. connman.PushMessage(pfrom, NetMsgType::PONG, nonce); } } else if (strCommand == NetMsgType::PONG) { int64_t pingUsecEnd = nTimeReceived; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old ping without nonce should never pong) if (pfrom->nPingNonceSent != 0) { if (nonce == pfrom->nPingNonceSent) { // Matching pong received, this ping is no longer outstanding bPingFinished = true; int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart; if (pingUsecTime > 0) { // Successful ping time measurement, replace previous pfrom->nPingUsecTime = pingUsecTime; pfrom->nMinPingUsecTime = std::min(pfrom->nMinPingUsecTime, pingUsecTime); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint("net", "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom->id, sProblem, pfrom->nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom->nPingNonceSent = 0; } } else if (strCommand == NetMsgType::FILTERLOAD) { CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter LOCK(cs_main); Misbehaving(pfrom->GetId(), 100); } else { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(filter); pfrom->pfilter->UpdateEmptyFull(); pfrom->fRelayTxes = true; } } else if (strCommand == NetMsgType::FILTERADD) { vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object, // and thus, the maximum size any matched object can have) in a filteradd message bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { pfrom->pfilter->insert(vData); } else { bad = true; } } if (bad) { LOCK(cs_main); Misbehaving(pfrom->GetId(), 100); } } else if (strCommand == NetMsgType::FILTERCLEAR) { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(); pfrom->fRelayTxes = true; } else if (strCommand == NetMsgType::REJECT) { if (fDebug) { try { string strMsg; unsigned char ccode; string strReason; vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, MAX_REJECT_MESSAGE_LENGTH); ostringstream ss; ss << strMsg << " code " << itostr(ccode) << ": " << strReason; if (strMsg == NetMsgType::BLOCK || strMsg == NetMsgType::TX) { uint256 hash; vRecv >> hash; ss << ": hash " << hash.ToString(); } LogPrint("net", "Reject %s\n", SanitizeString(ss.str())); } catch (const std::ios_base::failure&) { // Avoid feedback loops by preventing reject messages from triggering a new reject message. LogPrint("net", "Unparseable reject message received\n"); } } } else if (strCommand == NetMsgType::FEEFILTER) { CAmount newFeeFilter = 0; vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { { LOCK(pfrom->cs_feeFilter); pfrom->minFeeFilter = newFeeFilter; } LogPrint("net", "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom->id); } } else if (strCommand == NetMsgType::NOTFOUND) { // We do not care about the NOTFOUND message, but logging an Unknown Command // message would be undesirable as we transmit it ourselves. } else { // Ignore unknown commands for extensibility LogPrint("net", "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->id); } return true; } // requires LOCK(cs_vRecvMsg) bool ProcessMessages(CNode* pfrom, CConnman& connman) { const CChainParams& chainparams = Params(); unsigned int nMaxSendBufferSize = connman.GetSendBufferSize(); //if (fDebug) // LogPrintf("%s(%u messages)\n", __func__, pfrom->vRecvMsg.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fOk = true; if (!pfrom->vRecvGetData.empty()) ProcessGetData(pfrom, chainparams.GetConsensus(), connman); // this maintains the order of responses if (!pfrom->vRecvGetData.empty()) return fOk; std::deque::iterator it = pfrom->vRecvMsg.begin(); while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= nMaxSendBufferSize) break; // get next message CNetMessage& msg = *it; //if (fDebug) // LogPrintf("%s(message %u msgsz, %u bytes, complete:%s)\n", __func__, // msg.hdr.nMessageSize, msg.vRecv.size(), // msg.complete() ? "Y" : "N"); // end, if an incomplete message is found if (!msg.complete()) break; // at this point, any failure means we can delete the current message it++; // Scan for message start if (memcmp(msg.hdr.pchMessageStart, chainparams.MessageStart(), CMessageHeader::MESSAGE_START_SIZE) != 0) { LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.hdr.GetCommand()), pfrom->id); fOk = false; break; } // Read header CMessageHeader& hdr = msg.hdr; if (!hdr.IsValid(chainparams.MessageStart())) { LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(hdr.GetCommand()), pfrom->id); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; // Checksum CDataStream& vRecv = msg.vRecv; uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) { LogPrintf("%s(%s, %u bytes): CHECKSUM ERROR expected %s was %s\n", __func__, SanitizeString(strCommand), nMessageSize, HexStr(hash.begin(), hash.begin()+CMessageHeader::CHECKSUM_SIZE), HexStr(hdr.pchChecksum, hdr.pchChecksum+CMessageHeader::CHECKSUM_SIZE)); continue; } // Process message bool fRet = false; try { fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime, chainparams, connman); boost::this_thread::interruption_point(); } catch (const std::ios_base::failure& e) { connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_MALFORMED, string("error parsing message")); if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv LogPrintf("%s(%s, %u bytes): Exception '%s' caught, normally caused by a message being shorter than its stated length\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else if (strstr(e.what(), "non-canonical ReadCompactSize()")) { // Allow exceptions from non-canonical encoding LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (const boost::thread_interrupted&) { throw; } catch (const std::exception& e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessages()"); } if (!fRet) LogPrintf("%s(%s, %u bytes) FAILED peer=%d\n", __func__, SanitizeString(strCommand), nMessageSize, pfrom->id); break; } // In case the connection got shut down, its receive buffer was wiped if (!pfrom->fDisconnect) pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it); return fOk; } class CompareInvMempoolOrder { CTxMemPool *mp; public: CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; } bool operator()(std::set::iterator a, std::set::iterator b) { /* As std::make_heap produces a max-heap, we want the entries with the * fewest ancestors/highest fee to sort later. */ return mp->CompareDepthAndScore(*b, *a); } }; bool SendMessages(CNode* pto, CConnman& connman) { const Consensus::Params& consensusParams = Params().GetConsensus(); { // Don't send anything until we get its version message if (pto->nVersion == 0) return true; // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend && !pto->fDisconnect) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((unsigned char*)&nonce, sizeof(nonce)); } pto->fPingQueued = false; pto->nPingUsecStart = GetTimeMicros(); if (pto->nVersion > BIP0031_VERSION) { pto->nPingNonceSent = nonce; connman.PushMessage(pto, NetMsgType::PING, nonce); } else { // Peer is too old to support ping command with nonce, pong will never arrive. pto->nPingNonceSent = 0; connman.PushMessage(pto, NetMsgType::PING); } } TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState() if (!lockMain) return true; // Address refresh broadcast int64_t nNow = GetTimeMicros(); if (!IsInitialBlockDownload() && pto->nNextLocalAddrSend < nNow) { AdvertiseLocal(pto); pto->nNextLocalAddrSend = PoissonNextSend(nNow, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // // Message: addr // if (pto->nNextAddrSend < nNow) { pto->nNextAddrSend = PoissonNextSend(nNow, AVG_ADDRESS_BROADCAST_INTERVAL); vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { if (!pto->addrKnown.contains(addr.GetKey())) { pto->addrKnown.insert(addr.GetKey()); vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { connman.PushMessage(pto, NetMsgType::ADDR, vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) connman.PushMessage(pto, NetMsgType::ADDR, vAddr); // we only send the big addr message once if (pto->vAddrToSend.capacity() > 40) pto->vAddrToSend.shrink_to_fit(); } CNodeState &state = *State(pto->GetId()); if (state.fShouldBan) { if (pto->fWhitelisted) LogPrintf("Warning: not punishing whitelisted peer %s!\n", pto->addr.ToString()); else { pto->fDisconnect = true; if (pto->addr.IsLocal()) LogPrintf("Warning: not banning local peer %s!\n", pto->addr.ToString()); else { connman.Ban(pto->addr, BanReasonNodeMisbehaving); } } state.fShouldBan = false; } BOOST_FOREACH(const CBlockReject& reject, state.rejects) connman.PushMessage(pto, NetMsgType::REJECT, (string)NetMsgType::BLOCK, reject.chRejectCode, reject.strRejectReason, reject.hashBlock); state.rejects.clear(); // Start block sync if (pindexBestHeader == NULL) pindexBestHeader = chainActive.Tip(); bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); // Download if this is a nice peer, or we have no nice peers and this one might do. if (!state.fSyncStarted && !pto->fClient && !pto->fDisconnect && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're close to today. if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; nSyncStarted++; const CBlockIndex *pindexStart = pindexBestHeader; /* If possible, start at the block preceding the currently best known header. This ensures that we always get a non-empty list of headers back as long as the peer is up-to-date. With a non-empty response, we can initialise the peer's known best block. This wouldn't be possible if we requested starting at pindexBestHeader and got back an empty response. */ if (pindexStart->pprev) pindexStart = pindexStart->pprev; LogPrint("net", "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->id, pto->nStartingHeight); connman.PushMessage(pto, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexStart), uint256()); } } // Resend wallet transactions that haven't gotten in a block yet // Except during reindex, importing and IBD, when old wallet // transactions become unconfirmed and spams other nodes. if (!fReindex && !fImporting && !IsInitialBlockDownload()) { GetMainSignals().Broadcast(nTimeBestReceived, &connman); } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our // list of block hashes we're relaying, and our peer wants // headers announcements, then find the first header // not yet known to our peer but would connect, and send. // If no header would connect, or if we have too many // blocks, or if the peer doesn't want headers, just // add all to the inv queue. LOCK(pto->cs_inventory); vector vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.fPreferHeaderAndIDs || pto->vBlockHashesToAnnounce.size() > 1)) || pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE); CBlockIndex *pBestIndex = NULL; // last header queued for delivery ProcessBlockAvailability(pto->id); // ensure pindexBestKnownBlock is up-to-date if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and // then send all headers past that one. If we come across any // headers that aren't on chainActive, give up. BOOST_FOREACH(const uint256 &hash, pto->vBlockHashesToAnnounce) { BlockMap::iterator mi = mapBlockIndex.find(hash); assert(mi != mapBlockIndex.end()); CBlockIndex *pindex = mi->second; if (chainActive[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != NULL && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. // This shouldn't really be possible to hit during // regular operation (because reorgs should take us to // a chain that has some block not on the prior chain, // which should be caught by the prior check), but one // way this could happen is by using invalidateblock / // reconsiderblock repeatedly on the tip, causing it to // be added multiple times to vBlockHashesToAnnounce. // Robustly deal with this rare situation by reverting // to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { continue; // keep looking for the first new block } else if (pindex->pprev == NULL || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the prior one. // Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- nothing will // connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) { // We only send up to 1 block as header-and-ids, as otherwise // probably means we're doing an initial-ish-sync or they're slow LogPrint("net", "%s sending header-and-ids %s to peer %d\n", __func__, vHeaders.front().GetHash().ToString(), pto->id); //TODO: Shouldn't need to reload block from disk, but requires refactor CBlock block; assert(ReadBlockFromDisk(block, pBestIndex, consensusParams)); CBlockHeaderAndShortTxIDs cmpctblock(block, state.fWantsCmpctWitness); connman.PushMessageWithFlag(pto, state.fWantsCmpctWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::CMPCTBLOCK, cmpctblock); state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint("net", "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->id); } else { LogPrint("net", "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->id); } connman.PushMessage(pto, NetMsgType::HEADERS, vHeaders); state.pindexBestHeaderSent = pBestIndex; } else fRevertToInv = true; } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. // The last entry in vBlockHashesToAnnounce was our tip at some point // in the past. if (!pto->vBlockHashesToAnnounce.empty()) { const uint256 &hashToAnnounce = pto->vBlockHashesToAnnounce.back(); BlockMap::iterator mi = mapBlockIndex.find(hashToAnnounce); assert(mi != mapBlockIndex.end()); CBlockIndex *pindex = mi->second; // Warn if we're announcing a block that is not on the main chain. // This should be very rare and could be optimized out. // Just log for now. if (chainActive[pindex->nHeight] != pindex) { LogPrint("net", "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), chainActive.Tip()->GetBlockHash().ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { pto->PushInventory(CInv(MSG_BLOCK, hashToAnnounce)); LogPrint("net", "%s: sending inv peer=%d hash=%s\n", __func__, pto->id, hashToAnnounce.ToString()); } } } pto->vBlockHashesToAnnounce.clear(); } // // Message: inventory // vector vInv; { LOCK(pto->cs_inventory); vInv.reserve(std::max(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX)); // Add blocks BOOST_FOREACH(const uint256& hash, pto->vInventoryBlockToSend) { vInv.push_back(CInv(MSG_BLOCK, hash)); if (vInv.size() == MAX_INV_SZ) { connman.PushMessage(pto, NetMsgType::INV, vInv); vInv.clear(); } } pto->vInventoryBlockToSend.clear(); // Check whether periodic sends should happen bool fSendTrickle = pto->fWhitelisted; if (pto->nNextInvSend < nNow) { fSendTrickle = true; // Use half the delay for outbound peers, as there is less privacy concern for them. pto->nNextInvSend = PoissonNextSend(nNow, INVENTORY_BROADCAST_INTERVAL >> !pto->fInbound); } // Time to send but the peer has requested we not relay transactions. if (fSendTrickle) { LOCK(pto->cs_filter); if (!pto->fRelayTxes) pto->setInventoryTxToSend.clear(); } // Respond to BIP35 mempool requests if (fSendTrickle && pto->fSendMempool) { auto vtxinfo = mempool.infoAll(); pto->fSendMempool = false; CAmount filterrate = 0; { LOCK(pto->cs_feeFilter); filterrate = pto->minFeeFilter; } LOCK(pto->cs_filter); for (const auto& txinfo : vtxinfo) { const uint256& hash = txinfo.tx->GetHash(); CInv inv(MSG_TX, hash); pto->setInventoryTxToSend.erase(hash); if (filterrate) { if (txinfo.feeRate.GetFeePerK() < filterrate) continue; } if (pto->pfilter) { if (!pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue; } pto->filterInventoryKnown.insert(hash); vInv.push_back(inv); if (vInv.size() == MAX_INV_SZ) { connman.PushMessage(pto, NetMsgType::INV, vInv); vInv.clear(); } } pto->timeLastMempoolReq = GetTime(); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending vector::iterator> vInvTx; vInvTx.reserve(pto->setInventoryTxToSend.size()); for (std::set::iterator it = pto->setInventoryTxToSend.begin(); it != pto->setInventoryTxToSend.end(); it++) { vInvTx.push_back(it); } CAmount filterrate = 0; { LOCK(pto->cs_feeFilter); filterrate = pto->minFeeFilter; } // Topologically and fee-rate sort the inventory we send for privacy and priority reasons. // A heap is used so that not all items need sorting if only a few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's capacity, // especially since we have many peers and some will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(pto->cs_filter); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set::iterator it = vInvTx.back(); vInvTx.pop_back(); uint256 hash = *it; // Remove it from the to-be-sent set pto->setInventoryTxToSend.erase(it); // Check if not in the filter already if (pto->filterInventoryKnown.contains(hash)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = mempool.info(hash); if (!txinfo.tx) { continue; } if (filterrate && txinfo.feeRate.GetFeePerK() < filterrate) { continue; } if (pto->pfilter && !pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue; // Send vInv.push_back(CInv(MSG_TX, hash)); nRelayedTransactions++; { // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < nNow) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } auto ret = mapRelay.insert(std::make_pair(hash, std::move(txinfo.tx))); if (ret.second) { vRelayExpiration.push_back(std::make_pair(nNow + 15 * 60 * 1000000, ret.first)); } } if (vInv.size() == MAX_INV_SZ) { connman.PushMessage(pto, NetMsgType::INV, vInv); vInv.clear(); } pto->filterInventoryKnown.insert(hash); } } } if (!vInv.empty()) connman.PushMessage(pto, NetMsgType::INV, vInv); // Detect whether we're stalling nNow = GetTimeMicros(); if (!pto->fDisconnect && state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot move. During normal steady state, // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection // should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->id); pto->fDisconnect = true; } // In case there is a block that has been in flight from this peer for 2 + 0.5 * N times the block interval // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our own downstream link // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (!pto->fDisconnect && state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0); if (nNow > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, disconnecting\n", queuedBlock.hash.ToString(), pto->id); pto->fDisconnect = true; } } // // Message: getdata (blocks) // vector vGetData; if (!pto->fDisconnect && !pto->fClient && (fFetch || !IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller, consensusParams); BOOST_FOREACH(CBlockIndex *pindex, vToDownload) { uint32_t nFetchFlags = GetFetchFlags(pto, pindex->pprev, consensusParams); vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash())); MarkBlockAsInFlight(pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex); LogPrint("net", "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->id); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->nStallingSince == 0) { State(staller)->nStallingSince = nNow; LogPrint("net", "Stall started peer=%d\n", staller); } } } // // Message: getdata (non-blocks) // while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(inv)) { if (fDebug) LogPrint("net", "Requesting %s peer=%d\n", inv.ToString(), pto->id); vGetData.push_back(inv); if (vGetData.size() >= 1000) { connman.PushMessage(pto, NetMsgType::GETDATA, vGetData); vGetData.clear(); } } else { //If we're not going to ask, don't expect a response. pto->setAskFor.erase(inv.hash); } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) connman.PushMessage(pto, NetMsgType::GETDATA, vGetData); // // Message: feefilter // // We don't want white listed peers to filter txs to us if we have -whitelistforcerelay if (pto->nVersion >= FEEFILTER_VERSION && GetBoolArg("-feefilter", DEFAULT_FEEFILTER) && !(pto->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY))) { CAmount currentFilter = mempool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFeePerK(); int64_t timeNow = GetTimeMicros(); if (timeNow > pto->nextSendTimeFeeFilter) { CAmount filterToSend = filterRounder.round(currentFilter); if (filterToSend != pto->lastSentFeeFilter) { connman.PushMessage(pto, NetMsgType::FEEFILTER, filterToSend); pto->lastSentFeeFilter = filterToSend; } pto->nextSendTimeFeeFilter = PoissonNextSend(timeNow, AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (timeNow + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->nextSendTimeFeeFilter && (currentFilter < 3 * pto->lastSentFeeFilter / 4 || currentFilter > 4 * pto->lastSentFeeFilter / 3)) { pto->nextSendTimeFeeFilter = timeNow + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000; } } } return true; } std::string CBlockFileInfo::ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast)); } ThresholdState VersionBitsTipState(const Consensus::Params& params, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache); } int VersionBitsTipStateSinceHeight(const Consensus::Params& params, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos, versionbitscache); } static const uint64_t MEMPOOL_DUMP_VERSION = 1; bool LoadMempool(void) { int64_t nExpiryTimeout = GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60; FILE* filestr = fopen((GetDataDir() / "mempool.dat").string().c_str(), "r"); CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); if (file.IsNull()) { LogPrintf("Failed to open mempool file from disk. Continuing anyway.\n"); return false; } int64_t count = 0; int64_t skipped = 0; int64_t failed = 0; int64_t nNow = GetTime(); try { uint64_t version; file >> version; if (version != MEMPOOL_DUMP_VERSION) { return false; } uint64_t num; file >> num; double prioritydummy = 0; while (num--) { CTransaction tx; int64_t nTime; int64_t nFeeDelta; file >> tx; file >> nTime; file >> nFeeDelta; CAmount amountdelta = nFeeDelta; if (amountdelta) { mempool.PrioritiseTransaction(tx.GetHash(), tx.GetHash().ToString(), prioritydummy, amountdelta); } CValidationState state; if (nTime + nExpiryTimeout > nNow) { LOCK(cs_main); AcceptToMemoryPoolWithTime(mempool, state, tx, true, NULL, nTime); if (state.IsValid()) { ++count; } else { ++failed; } } else { ++skipped; } } std::map mapDeltas; file >> mapDeltas; for (const auto& i : mapDeltas) { mempool.PrioritiseTransaction(i.first, i.first.ToString(), prioritydummy, i.second); } } catch (const std::exception& e) { LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing anyway.\n", e.what()); return false; } LogPrintf("Imported mempool transactions from disk: %i successes, %i failed, %i expired\n", count, failed, skipped); return true; } void DumpMempool(void) { int64_t start = GetTimeMicros(); std::map mapDeltas; std::vector vinfo; { LOCK(mempool.cs); for (const auto &i : mempool.mapDeltas) { mapDeltas[i.first] = i.second.first; } vinfo = mempool.infoAll(); } int64_t mid = GetTimeMicros(); try { FILE* filestr = fopen((GetDataDir() / "mempool.dat.new").string().c_str(), "w"); if (!filestr) { return; } CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); uint64_t version = MEMPOOL_DUMP_VERSION; file << version; file << (uint64_t)vinfo.size(); for (const auto& i : vinfo) { file << *(i.tx); file << (int64_t)i.nTime; file << (int64_t)i.nFeeDelta; mapDeltas.erase(i.tx->GetHash()); } file << mapDeltas; FileCommit(file.Get()); file.fclose(); RenameOver(GetDataDir() / "mempool.dat.new", GetDataDir() / "mempool.dat"); int64_t last = GetTimeMicros(); LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid-start)*0.000001, (last-mid)*0.000001); } catch (const std::exception& e) { LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what()); } } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers BlockMap::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } } instance_of_cmaincleanup;