// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "main.h" #include "addrman.h" #include "alert.h" #include "chainparams.h" #include "checkpoints.h" #include "checkqueue.h" #include "init.h" #include "net.h" #include "pow.h" #include "txdb.h" #include "txmempool.h" #include "ui_interface.h" #include "util.h" #include "utilmoneystr.h" #include #include #include #include #include using namespace boost; using namespace std; #if defined(NDEBUG) # error "Bitcoin cannot be compiled without assertions." #endif // // Global state // CCriticalSection cs_main; BlockMap mapBlockIndex; CChain chainActive; CBlockIndex *pindexBestHeader = NULL; int64_t nTimeBestReceived = 0; CWaitableCriticalSection csBestBlock; CConditionVariable cvBlockChange; int nScriptCheckThreads = 0; bool fImporting = false; bool fReindex = false; bool fTxIndex = false; bool fIsBareMultisigStd = true; unsigned int nCoinCacheSize = 5000; /** Fees smaller than this (in satoshi) are considered zero fee (for relaying and mining) */ CFeeRate minRelayTxFee = CFeeRate(1000); CTxMemPool mempool(::minRelayTxFee); struct COrphanTx { CTransaction tx; NodeId fromPeer; }; map mapOrphanTransactions; map > mapOrphanTransactionsByPrev; void EraseOrphansFor(NodeId peer); // Constant stuff for coinbase transactions we create: CScript COINBASE_FLAGS; const string strMessageMagic = "Bitcoin Signed Message:\n"; // Internal stuff namespace { struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) { // First sort by most total work, ... if (pa->nChainWork > pb->nChainWork) return false; if (pa->nChainWork < pb->nChainWork) return true; // ... then by earliest time received, ... if (pa->nSequenceId < pb->nSequenceId) return false; if (pa->nSequenceId > pb->nSequenceId) return true; // Use pointer address as tie breaker (should only happen with blocks // loaded from disk, as those all have id 0). if (pa < pb) return false; if (pa > pb) return true; // Identical blocks. return false; } }; CBlockIndex *pindexBestInvalid; // The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS or better that are at least // as good as our current tip. Entries may be failed, though. set setBlockIndexCandidates; // Number of nodes with fSyncStarted. int nSyncStarted = 0; // All pairs A->B, where A (or one if its ancestors) misses transactions, but B has transactions. multimap mapBlocksUnlinked; CCriticalSection cs_LastBlockFile; std::vector vinfoBlockFile; int nLastBlockFile = 0; // Every received block is assigned a unique and increasing identifier, so we // know which one to give priority in case of a fork. CCriticalSection cs_nBlockSequenceId; // Blocks loaded from disk are assigned id 0, so start the counter at 1. uint32_t nBlockSequenceId = 1; // Sources of received blocks, to be able to send them reject messages or ban // them, if processing happens afterwards. Protected by cs_main. map mapBlockSource; // Blocks that are in flight, and that are in the queue to be downloaded. // Protected by cs_main. struct QueuedBlock { uint256 hash; CBlockIndex *pindex; // Optional. int64_t nTime; // Time of "getdata" request in microseconds. }; map::iterator> > mapBlocksInFlight; // Number of preferrable block download peers. int nPreferredDownload = 0; } // anon namespace ////////////////////////////////////////////////////////////////////////////// // // dispatching functions // // These functions dispatch to one or all registered wallets namespace { struct CMainSignals { // Notifies listeners of updated transaction data (transaction, and optionally the block it is found in. boost::signals2::signal SyncTransaction; // Notifies listeners of an erased transaction (currently disabled, requires transaction replacement). boost::signals2::signal EraseTransaction; // Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible). boost::signals2::signal UpdatedTransaction; // Notifies listeners of a new active block chain. boost::signals2::signal SetBestChain; // Notifies listeners about an inventory item being seen on the network. boost::signals2::signal Inventory; // Tells listeners to broadcast their data. boost::signals2::signal Broadcast; // Notifies listeners of a block validation result boost::signals2::signal BlockChecked; } g_signals; } // anon namespace void RegisterValidationInterface(CValidationInterface* pwalletIn) { g_signals.SyncTransaction.connect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2)); g_signals.EraseTransaction.connect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1)); g_signals.UpdatedTransaction.connect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1)); g_signals.SetBestChain.connect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1)); g_signals.Inventory.connect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1)); g_signals.Broadcast.connect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn)); g_signals.BlockChecked.connect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2)); } void UnregisterValidationInterface(CValidationInterface* pwalletIn) { g_signals.BlockChecked.disconnect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2)); g_signals.Broadcast.disconnect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn)); g_signals.Inventory.disconnect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1)); g_signals.SetBestChain.disconnect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1)); g_signals.UpdatedTransaction.disconnect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1)); g_signals.EraseTransaction.disconnect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1)); g_signals.SyncTransaction.disconnect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2)); } void UnregisterAllValidationInterfaces() { g_signals.BlockChecked.disconnect_all_slots(); g_signals.Broadcast.disconnect_all_slots(); g_signals.Inventory.disconnect_all_slots(); g_signals.SetBestChain.disconnect_all_slots(); g_signals.UpdatedTransaction.disconnect_all_slots(); g_signals.EraseTransaction.disconnect_all_slots(); g_signals.SyncTransaction.disconnect_all_slots(); } void SyncWithWallets(const CTransaction &tx, const CBlock *pblock) { g_signals.SyncTransaction(tx, pblock); } ////////////////////////////////////////////////////////////////////////////// // // Registration of network node signals. // namespace { struct CBlockReject { unsigned char chRejectCode; string strRejectReason; uint256 hashBlock; }; // Maintain validation-specific state about nodes, protected by cs_main, instead // by CNode's own locks. This simplifies asynchronous operation, where // processing of incoming data is done after the ProcessMessage call returns, // and we're no longer holding the node's locks. struct CNodeState { // Accumulated misbehaviour score for this peer. int nMisbehavior; // Whether this peer should be disconnected and banned (unless whitelisted). bool fShouldBan; // String name of this peer (debugging/logging purposes). std::string name; // List of asynchronously-determined block rejections to notify this peer about. std::vector rejects; // The best known block we know this peer has announced. CBlockIndex *pindexBestKnownBlock; // The hash of the last unknown block this peer has announced. uint256 hashLastUnknownBlock; // The last full block we both have. CBlockIndex *pindexLastCommonBlock; // Whether we've started headers synchronization with this peer. bool fSyncStarted; // Since when we're stalling block download progress (in microseconds), or 0. int64_t nStallingSince; list vBlocksInFlight; int nBlocksInFlight; // Whether we consider this a preferred download peer. bool fPreferredDownload; CNodeState() { nMisbehavior = 0; fShouldBan = false; pindexBestKnownBlock = NULL; hashLastUnknownBlock = uint256(0); pindexLastCommonBlock = NULL; fSyncStarted = false; nStallingSince = 0; nBlocksInFlight = 0; fPreferredDownload = false; } }; // Map maintaining per-node state. Requires cs_main. map mapNodeState; // Requires cs_main. CNodeState *State(NodeId pnode) { map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) return NULL; return &it->second; } int GetHeight() { LOCK(cs_main); return chainActive.Height(); } void UpdatePreferredDownload(CNode* node, CNodeState* state) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient; nPreferredDownload += state->fPreferredDownload; } void InitializeNode(NodeId nodeid, const CNode *pnode) { LOCK(cs_main); CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second; state.name = pnode->addrName; } void FinalizeNode(NodeId nodeid) { LOCK(cs_main); CNodeState *state = State(nodeid); if (state->fSyncStarted) nSyncStarted--; BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight) mapBlocksInFlight.erase(entry.hash); EraseOrphansFor(nodeid); nPreferredDownload -= state->fPreferredDownload; mapNodeState.erase(nodeid); } // Requires cs_main. void MarkBlockAsReceived(const uint256& hash) { map::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->nStallingSince = 0; mapBlocksInFlight.erase(itInFlight); } } // Requires cs_main. void MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, CBlockIndex *pindex = NULL) { CNodeState *state = State(nodeid); assert(state != NULL); // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); QueuedBlock newentry = {hash, pindex, GetTimeMicros()}; list::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry); state->nBlocksInFlight++; mapBlocksInFlight[hash] = std::make_pair(nodeid, it); } /** Check whether the last unknown block a peer advertized is not yet known. */ void ProcessBlockAvailability(NodeId nodeid) { CNodeState *state = State(nodeid); assert(state != NULL); if (state->hashLastUnknownBlock != 0) { BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock); if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) { if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork) state->pindexBestKnownBlock = itOld->second; state->hashLastUnknownBlock = uint256(0); } } } /** Update tracking information about which blocks a peer is assumed to have. */ void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) { CNodeState *state = State(nodeid); assert(state != NULL); ProcessBlockAvailability(nodeid); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end() && it->second->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork) state->pindexBestKnownBlock = it->second; } else { // An unknown block was announced; just assume that the latest one is the best one. state->hashLastUnknownBlock = hash; } } /** Find the last common ancestor two blocks have. * Both pa and pb must be non-NULL. */ CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) { if (pa->nHeight > pb->nHeight) { pa = pa->GetAncestor(pb->nHeight); } else if (pb->nHeight > pa->nHeight) { pb = pb->GetAncestor(pa->nHeight); } while (pa != pb && pa && pb) { pa = pa->pprev; pb = pb->pprev; } // Eventually all chain branches meet at the genesis block. assert(pa == pb); return pa; } /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has * at most count entries. */ void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector& vBlocks, NodeId& nodeStaller) { if (count == 0) return; vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != NULL); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == NULL) { // Bootstrap quickly by guessing a parent of our best tip is the forking point. // Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor // of their current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) return; std::vector vToFetch; CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to // download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive // as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding the ones that // are not yet downloaded and not in flight to vBlocks. In the mean time, update // pindexLastCommonBlock as long as all ancestors are already downloaded. BOOST_FOREACH(CBlockIndex* pindex, vToFetch) { if (pindex->nStatus & BLOCK_HAVE_DATA) { if (pindex->nChainTx) state->pindexLastCommonBlock = pindex; } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // anon namespace bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == NULL) return false; stats.nMisbehavior = state->nMisbehavior; stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) { if (queue.pindex) stats.vHeightInFlight.push_back(queue.pindex->nHeight); } return true; } void RegisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.GetHeight.connect(&GetHeight); nodeSignals.ProcessMessages.connect(&ProcessMessages); nodeSignals.SendMessages.connect(&SendMessages); nodeSignals.InitializeNode.connect(&InitializeNode); nodeSignals.FinalizeNode.connect(&FinalizeNode); } void UnregisterNodeSignals(CNodeSignals& nodeSignals) { nodeSignals.GetHeight.disconnect(&GetHeight); nodeSignals.ProcessMessages.disconnect(&ProcessMessages); nodeSignals.SendMessages.disconnect(&SendMessages); nodeSignals.InitializeNode.disconnect(&InitializeNode); nodeSignals.FinalizeNode.disconnect(&FinalizeNode); } CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator) { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, locator.vHave) { BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (chain.Contains(pindex)) return pindex; } } return chain.Genesis(); } CCoinsViewCache *pcoinsTip = NULL; CBlockTreeDB *pblocktree = NULL; ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // bool AddOrphanTx(const CTransaction& tx, NodeId peer) { uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 10,000 orphans, each of which is at most 5,000 bytes big is // at most 500 megabytes of orphans: unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (sz > 5000) { LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString()); return false; } mapOrphanTransactions[hash].tx = tx; mapOrphanTransactions[hash].fromPeer = peer; BOOST_FOREACH(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash); LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } void static EraseOrphanTx(uint256 hash) { map::iterator it = mapOrphanTransactions.find(hash); if (it == mapOrphanTransactions.end()) return; BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin) { map >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash); if (itPrev == mapOrphanTransactionsByPrev.end()) continue; itPrev->second.erase(hash); if (itPrev->second.empty()) mapOrphanTransactionsByPrev.erase(itPrev); } mapOrphanTransactions.erase(it); } void EraseOrphansFor(NodeId peer) { int nErased = 0; map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { map::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid if (maybeErase->second.fromPeer == peer) { EraseOrphanTx(maybeErase->second.tx.GetHash()); ++nErased; } } if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer); } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { unsigned int nEvicted = 0; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = GetRandHash(); map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } bool IsStandardTx(const CTransaction& tx, string& reason) { AssertLockHeld(cs_main); if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) { reason = "version"; return false; } // Treat non-final transactions as non-standard to prevent a specific type // of double-spend attack, as well as DoS attacks. (if the transaction // can't be mined, the attacker isn't expending resources broadcasting it) // Basically we don't want to propagate transactions that can't be included in // the next block. // // However, IsFinalTx() is confusing... Without arguments, it uses // chainActive.Height() to evaluate nLockTime; when a block is accepted, chainActive.Height() // is set to the value of nHeight in the block. However, when IsFinalTx() // is called within CBlock::AcceptBlock(), the height of the block *being* // evaluated is what is used. Thus if we want to know if a transaction can // be part of the *next* block, we need to call IsFinalTx() with one more // than chainActive.Height(). // // Timestamps on the other hand don't get any special treatment, because we // can't know what timestamp the next block will have, and there aren't // timestamp applications where it matters. if (!IsFinalTx(tx, chainActive.Height() + 1)) { reason = "non-final"; return false; } // Extremely large transactions with lots of inputs can cost the network // almost as much to process as they cost the sender in fees, because // computing signature hashes is O(ninputs*txsize). Limiting transactions // to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks. unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (sz >= MAX_STANDARD_TX_SIZE) { reason = "tx-size"; return false; } BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed // keys. (remember the 520 byte limit on redeemScript size) That works // out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)+3=1627 // bytes of scriptSig, which we round off to 1650 bytes for some minor // future-proofing. That's also enough to spend a 20-of-20 // CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not // considered standard) if (txin.scriptSig.size() > 1650) { reason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { reason = "scriptsig-not-pushonly"; return false; } } unsigned int nDataOut = 0; txnouttype whichType; BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (!::IsStandard(txout.scriptPubKey, whichType)) { reason = "scriptpubkey"; return false; } if (whichType == TX_NULL_DATA) nDataOut++; else if ((whichType == TX_MULTISIG) && (!fIsBareMultisigStd)) { reason = "bare-multisig"; return false; } else if (txout.IsDust(::minRelayTxFee)) { reason = "dust"; return false; } } // only one OP_RETURN txout is permitted if (nDataOut > 1) { reason = "multi-op-return"; return false; } return true; } bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) { AssertLockHeld(cs_main); // Time based nLockTime implemented in 0.1.6 if (tx.nLockTime == 0) return true; if (nBlockHeight == 0) nBlockHeight = chainActive.Height(); if (nBlockTime == 0) nBlockTime = GetAdjustedTime(); if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime)) return true; BOOST_FOREACH(const CTxIn& txin, tx.vin) if (!txin.IsFinal()) return false; return true; } // // Check transaction inputs to mitigate two // potential denial-of-service attacks: // // 1. scriptSigs with extra data stuffed into them, // not consumed by scriptPubKey (or P2SH script) // 2. P2SH scripts with a crazy number of expensive // CHECKSIG/CHECKMULTISIG operations // bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs) { if (tx.IsCoinBase()) return true; // Coinbases don't use vin normally for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]); vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions); if (nArgsExpected < 0) return false; // Transactions with extra stuff in their scriptSigs are // non-standard. Note that this EvalScript() call will // be quick, because if there are any operations // beside "push data" in the scriptSig // IsStandard() will have already returned false // and this method isn't called. vector > stack; if (!EvalScript(stack, tx.vin[i].scriptSig, false, BaseSignatureChecker())) return false; if (whichType == TX_SCRIPTHASH) { if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); vector > vSolutions2; txnouttype whichType2; if (Solver(subscript, whichType2, vSolutions2)) { int tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2); if (tmpExpected < 0) return false; nArgsExpected += tmpExpected; } else { // Any other Script with less than 15 sigops OK: unsigned int sigops = subscript.GetSigOpCount(true); // ... extra data left on the stack after execution is OK, too: return (sigops <= MAX_P2SH_SIGOPS); } } if (stack.size() != (unsigned int)nArgsExpected) return false; } return true; } unsigned int GetLegacySigOpCount(const CTransaction& tx) { unsigned int nSigOps = 0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } BOOST_FOREACH(const CTxOut& txout, tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs) { if (tx.IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig); } return nSigOps; } bool CheckTransaction(const CTransaction& tx, CValidationState &state) { // Basic checks that don't depend on any context if (tx.vin.empty()) return state.DoS(10, error("CheckTransaction() : vin empty"), REJECT_INVALID, "bad-txns-vin-empty"); if (tx.vout.empty()) return state.DoS(10, error("CheckTransaction() : vout empty"), REJECT_INVALID, "bad-txns-vout-empty"); // Size limits if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CheckTransaction() : size limits failed"), REJECT_INVALID, "bad-txns-oversize"); // Check for negative or overflow output values CAmount nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, tx.vout) { if (txout.nValue < 0) return state.DoS(100, error("CheckTransaction() : txout.nValue negative"), REJECT_INVALID, "bad-txns-vout-negative"); if (txout.nValue > MAX_MONEY) return state.DoS(100, error("CheckTransaction() : txout.nValue too high"), REJECT_INVALID, "bad-txns-vout-toolarge"); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return state.DoS(100, error("CheckTransaction() : txout total out of range"), REJECT_INVALID, "bad-txns-txouttotal-toolarge"); } // Check for duplicate inputs set vInOutPoints; BOOST_FOREACH(const CTxIn& txin, tx.vin) { if (vInOutPoints.count(txin.prevout)) return state.DoS(100, error("CheckTransaction() : duplicate inputs"), REJECT_INVALID, "bad-txns-inputs-duplicate"); vInOutPoints.insert(txin.prevout); } if (tx.IsCoinBase()) { if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) return state.DoS(100, error("CheckTransaction() : coinbase script size"), REJECT_INVALID, "bad-cb-length"); } else { BOOST_FOREACH(const CTxIn& txin, tx.vin) if (txin.prevout.IsNull()) return state.DoS(10, error("CheckTransaction() : prevout is null"), REJECT_INVALID, "bad-txns-prevout-null"); } return true; } CAmount GetMinRelayFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree) { { LOCK(mempool.cs); uint256 hash = tx.GetHash(); double dPriorityDelta = 0; CAmount nFeeDelta = 0; mempool.ApplyDeltas(hash, dPriorityDelta, nFeeDelta); if (dPriorityDelta > 0 || nFeeDelta > 0) return 0; } CAmount nMinFee = ::minRelayTxFee.GetFee(nBytes); if (fAllowFree) { // There is a free transaction area in blocks created by most miners, // * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000 // to be considered to fall into this category. We don't want to encourage sending // multiple transactions instead of one big transaction to avoid fees. if (nBytes < (DEFAULT_BLOCK_PRIORITY_SIZE - 1000)) nMinFee = 0; } if (!MoneyRange(nMinFee)) nMinFee = MAX_MONEY; return nMinFee; } bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree, bool* pfMissingInputs, bool fRejectInsaneFee) { AssertLockHeld(cs_main); if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction(tx, state)) return error("AcceptToMemoryPool: : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return state.DoS(100, error("AcceptToMemoryPool: : coinbase as individual tx"), REJECT_INVALID, "coinbase"); // Rather not work on nonstandard transactions (unless -testnet/-regtest) string reason; if (Params().RequireStandard() && !IsStandardTx(tx, reason)) return state.DoS(0, error("AcceptToMemoryPool : nonstandard transaction: %s", reason), REJECT_NONSTANDARD, reason); // is it already in the memory pool? uint256 hash = tx.GetHash(); if (pool.exists(hash)) return false; // Check for conflicts with in-memory transactions { LOCK(pool.cs); // protect pool.mapNextTx for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (pool.mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; } } } { CCoinsView dummy; CCoinsViewCache view(&dummy); CAmount nValueIn = 0; { LOCK(pool.cs); CCoinsViewMemPool viewMemPool(pcoinsTip, pool); view.SetBackend(viewMemPool); // do we already have it? if (view.HaveCoins(hash)) return false; // do all inputs exist? // Note that this does not check for the presence of actual outputs (see the next check for that), // only helps filling in pfMissingInputs (to determine missing vs spent). BOOST_FOREACH(const CTxIn txin, tx.vin) { if (!view.HaveCoins(txin.prevout.hash)) { if (pfMissingInputs) *pfMissingInputs = true; return false; } } // are the actual inputs available? if (!view.HaveInputs(tx)) return state.Invalid(error("AcceptToMemoryPool : inputs already spent"), REJECT_DUPLICATE, "bad-txns-inputs-spent"); // Bring the best block into scope view.GetBestBlock(); nValueIn = view.GetValueIn(tx); // we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool view.SetBackend(dummy); } // Check for non-standard pay-to-script-hash in inputs if (Params().RequireStandard() && !AreInputsStandard(tx, view)) return error("AcceptToMemoryPool: : nonstandard transaction input"); // Check that the transaction doesn't have an excessive number of // sigops, making it impossible to mine. Since the coinbase transaction // itself can contain sigops MAX_TX_SIGOPS is less than // MAX_BLOCK_SIGOPS; we still consider this an invalid rather than // merely non-standard transaction. unsigned int nSigOps = GetLegacySigOpCount(tx); nSigOps += GetP2SHSigOpCount(tx, view); if (nSigOps > MAX_TX_SIGOPS) return state.DoS(0, error("AcceptToMemoryPool : too many sigops %s, %d > %d", hash.ToString(), nSigOps, MAX_TX_SIGOPS), REJECT_NONSTANDARD, "bad-txns-too-many-sigops"); CAmount nValueOut = tx.GetValueOut(); CAmount nFees = nValueIn-nValueOut; double dPriority = view.GetPriority(tx, chainActive.Height()); CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height()); unsigned int nSize = entry.GetTxSize(); // Don't accept it if it can't get into a block CAmount txMinFee = GetMinRelayFee(tx, nSize, true); if (fLimitFree && nFees < txMinFee) return state.DoS(0, error("AcceptToMemoryPool : not enough fees %s, %d < %d", hash.ToString(), nFees, txMinFee), REJECT_INSUFFICIENTFEE, "insufficient fee"); // Continuously rate-limit free (really, very-low-fee)transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (fLimitFree && nFees < ::minRelayTxFee.GetFee(nSize)) { static CCriticalSection csFreeLimiter; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); LOCK(csFreeLimiter); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000) return state.DoS(0, error("AcceptToMemoryPool : free transaction rejected by rate limiter"), REJECT_INSUFFICIENTFEE, "insufficient priority"); LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } if (fRejectInsaneFee && nFees > ::minRelayTxFee.GetFee(nSize) * 10000) return error("AcceptToMemoryPool: : insane fees %s, %d > %d", hash.ToString(), nFees, ::minRelayTxFee.GetFee(nSize) * 10000); // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!CheckInputs(tx, state, view, true, STANDARD_SCRIPT_VERIFY_FLAGS, true)) { return error("AcceptToMemoryPool: : ConnectInputs failed %s", hash.ToString()); } // Store transaction in memory pool.addUnchecked(hash, entry); } SyncWithWallets(tx, NULL); return true; } // Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow) { CBlockIndex *pindexSlow = NULL; { LOCK(cs_main); { if (mempool.lookup(hash, txOut)) { return true; } } if (fTxIndex) { CDiskTxPos postx; if (pblocktree->ReadTxIndex(hash, postx)) { CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION); CBlockHeader header; try { file >> header; fseek(file.Get(), postx.nTxOffset, SEEK_CUR); file >> txOut; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } hashBlock = header.GetHash(); if (txOut.GetHash() != hash) return error("%s : txid mismatch", __func__); return true; } } if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it int nHeight = -1; { CCoinsViewCache &view = *pcoinsTip; const CCoins* coins = view.AccessCoins(hash); if (coins) nHeight = coins->nHeight; } if (nHeight > 0) pindexSlow = chainActive[nHeight]; } } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow)) { BOOST_FOREACH(const CTransaction &tx, block.vtx) { if (tx.GetHash() == hash) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool WriteBlockToDisk(CBlock& block, CDiskBlockPos& pos) { // Open history file to append CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("WriteBlockToDisk : OpenBlockFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(block); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write block long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) return error("WriteBlockToDisk : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << block; // Flush stdio buffers and commit to disk before returning fflush(fileout.Get()); if (!IsInitialBlockDownload()) FileCommit(fileout.Get()); return true; } bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos) { block.SetNull(); // Open history file to read CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("ReadBlockFromDisk : OpenBlockFile failed"); // Read block try { filein >> block; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits)) return error("ReadBlockFromDisk : Errors in block header"); return true; } bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex) { if (!ReadBlockFromDisk(block, pindex->GetBlockPos())) return false; if (block.GetHash() != pindex->GetBlockHash()) return error("ReadBlockFromDisk(CBlock&, CBlockIndex*) : GetHash() doesn't match index"); return true; } CAmount GetBlockValue(int nHeight, const CAmount& nFees) { int64_t nSubsidy = 50 * COIN; int halvings = nHeight / Params().SubsidyHalvingInterval(); // Force block reward to zero when right shift is undefined. if (halvings >= 64) return nFees; // Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years. nSubsidy >>= halvings; return nSubsidy + nFees; } bool IsInitialBlockDownload() { LOCK(cs_main); if (fImporting || fReindex || chainActive.Height() < Checkpoints::GetTotalBlocksEstimate()) return true; static int64_t nLastUpdate; static CBlockIndex* pindexLastBest; if (chainActive.Tip() != pindexLastBest) { pindexLastBest = chainActive.Tip(); nLastUpdate = GetTime(); } return (GetTime() - nLastUpdate < 10 && chainActive.Tip()->GetBlockTime() < GetTime() - 24 * 60 * 60); } bool fLargeWorkForkFound = false; bool fLargeWorkInvalidChainFound = false; CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL; void CheckForkWarningConditions() { AssertLockHeld(cs_main); // Before we get past initial download, we cannot reliably alert about forks // (we assume we don't get stuck on a fork before the last checkpoint) if (IsInitialBlockDownload()) return; // If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it) // of our head, drop it if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72) pindexBestForkTip = NULL; if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6))) { if (!fLargeWorkForkFound) { std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") + pindexBestForkBase->phashBlock->ToString() + std::string("'"); CAlert::Notify(warning, true); } if (pindexBestForkTip) { LogPrintf("CheckForkWarningConditions: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(), pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString()); fLargeWorkForkFound = true; } else { LogPrintf("CheckForkWarningConditions: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n"); fLargeWorkInvalidChainFound = true; } } else { fLargeWorkForkFound = false; fLargeWorkInvalidChainFound = false; } } void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip) { AssertLockHeld(cs_main); // If we are on a fork that is sufficiently large, set a warning flag CBlockIndex* pfork = pindexNewForkTip; CBlockIndex* plonger = chainActive.Tip(); while (pfork && pfork != plonger) { while (plonger && plonger->nHeight > pfork->nHeight) plonger = plonger->pprev; if (pfork == plonger) break; pfork = pfork->pprev; } // We define a condition which we should warn the user about as a fork of at least 7 blocks // who's tip is within 72 blocks (+/- 12 hours if no one mines it) of ours // We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network // hash rate operating on the fork. // or a chain that is entirely longer than ours and invalid (note that this should be detected by both) // We define it this way because it allows us to only store the highest fork tip (+ base) which meets // the 7-block condition and from this always have the most-likely-to-cause-warning fork if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) && pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) && chainActive.Height() - pindexNewForkTip->nHeight < 72) { pindexBestForkTip = pindexNewForkTip; pindexBestForkBase = pfork; } CheckForkWarningConditions(); } // Requires cs_main. void Misbehaving(NodeId pnode, int howmuch) { if (howmuch == 0) return; CNodeState *state = State(pnode); if (state == NULL) return; state->nMisbehavior += howmuch; int banscore = GetArg("-banscore", 100); if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore) { LogPrintf("Misbehaving: %s (%d -> %d) BAN THRESHOLD EXCEEDED\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior); state->fShouldBan = true; } else LogPrintf("Misbehaving: %s (%d -> %d)\n", state->name, state->nMisbehavior-howmuch, state->nMisbehavior); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork) pindexBestInvalid = pindexNew; LogPrintf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n", pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime())); LogPrintf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime())); CheckForkWarningConditions(); } void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) { int nDoS = 0; if (state.IsInvalid(nDoS)) { std::map::iterator it = mapBlockSource.find(pindex->GetBlockHash()); if (it != mapBlockSource.end() && State(it->second)) { CBlockReject reject = {state.GetRejectCode(), state.GetRejectReason(), pindex->GetBlockHash()}; State(it->second)->rejects.push_back(reject); if (nDoS > 0) Misbehaving(it->second, nDoS); } } if (!state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex)); setBlockIndexCandidates.erase(pindex); InvalidChainFound(pindex); } } void UpdateCoins(const CTransaction& tx, CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight) { // mark inputs spent if (!tx.IsCoinBase()) { txundo.vprevout.reserve(tx.vin.size()); BOOST_FOREACH(const CTxIn &txin, tx.vin) { txundo.vprevout.push_back(CTxInUndo()); bool ret = inputs.ModifyCoins(txin.prevout.hash)->Spend(txin.prevout, txundo.vprevout.back()); assert(ret); } } // add outputs inputs.ModifyCoins(tx.GetHash())->FromTx(tx, nHeight); } bool CScriptCheck::operator()() const { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, nFlags, CachingSignatureChecker(*ptxTo, nIn, cacheStore))) return error("CScriptCheck() : %s:%d VerifySignature failed", ptxTo->GetHash().ToString(), nIn); return true; } bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheStore, std::vector *pvChecks) { if (!tx.IsCoinBase()) { if (pvChecks) pvChecks->reserve(tx.vin.size()); // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!inputs.HaveInputs(tx)) return state.Invalid(error("CheckInputs() : %s inputs unavailable", tx.GetHash().ToString())); // While checking, GetBestBlock() refers to the parent block. // This is also true for mempool checks. CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second; int nSpendHeight = pindexPrev->nHeight + 1; CAmount nValueIn = 0; CAmount nFees = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins *coins = inputs.AccessCoins(prevout.hash); assert(coins); // If prev is coinbase, check that it's matured if (coins->IsCoinBase()) { if (nSpendHeight - coins->nHeight < COINBASE_MATURITY) return state.Invalid( error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins->nHeight), REJECT_INVALID, "bad-txns-premature-spend-of-coinbase"); } // Check for negative or overflow input values nValueIn += coins->vout[prevout.n].nValue; if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return state.DoS(100, error("CheckInputs() : txin values out of range"), REJECT_INVALID, "bad-txns-inputvalues-outofrange"); } if (nValueIn < tx.GetValueOut()) return state.DoS(100, error("CheckInputs() : %s value in (%s) < value out (%s)", tx.GetHash().ToString(), FormatMoney(nValueIn), FormatMoney(tx.GetValueOut())), REJECT_INVALID, "bad-txns-in-belowout"); // Tally transaction fees CAmount nTxFee = nValueIn - tx.GetValueOut(); if (nTxFee < 0) return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", tx.GetHash().ToString()), REJECT_INVALID, "bad-txns-fee-negative"); nFees += nTxFee; if (!MoneyRange(nFees)) return state.DoS(100, error("CheckInputs() : nFees out of range"), REJECT_INVALID, "bad-txns-fee-outofrange"); // The first loop above does all the inexpensive checks. // Only if ALL inputs pass do we perform expensive ECDSA signature checks. // Helps prevent CPU exhaustion attacks. // Skip ECDSA signature verification when connecting blocks // before the last block chain checkpoint. This is safe because block merkle hashes are // still computed and checked, and any change will be caught at the next checkpoint. if (fScriptChecks) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins* coins = inputs.AccessCoins(prevout.hash); assert(coins); // Verify signature CScriptCheck check(*coins, tx, i, flags, cacheStore); if (pvChecks) { pvChecks->push_back(CScriptCheck()); check.swap(pvChecks->back()); } else if (!check()) { if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) { // Check whether the failure was caused by a // non-mandatory script verification check, such as // non-standard DER encodings or non-null dummy // arguments; if so, don't trigger DoS protection to // avoid splitting the network between upgraded and // non-upgraded nodes. CScriptCheck check(*coins, tx, i, flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheStore); if (check()) return state.Invalid(false, REJECT_NONSTANDARD, "non-mandatory-script-verify-flag"); } // Failures of other flags indicate a transaction that is // invalid in new blocks, e.g. a invalid P2SH. We DoS ban // such nodes as they are not following the protocol. That // said during an upgrade careful thought should be taken // as to the correct behavior - we may want to continue // peering with non-upgraded nodes even after a soft-fork // super-majority vote has passed. return state.DoS(100,false, REJECT_INVALID, "mandatory-script-verify-flag-failed"); } } } } return true; } bool DisconnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean) { assert(pindex->GetBlockHash() == view.GetBestBlock()); if (pfClean) *pfClean = false; bool fClean = true; CBlockUndo blockUndo; CDiskBlockPos pos = pindex->GetUndoPos(); if (pos.IsNull()) return error("DisconnectBlock() : no undo data available"); if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("DisconnectBlock() : failure reading undo data"); if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) return error("DisconnectBlock() : block and undo data inconsistent"); // undo transactions in reverse order for (int i = block.vtx.size() - 1; i >= 0; i--) { const CTransaction &tx = block.vtx[i]; uint256 hash = tx.GetHash(); // Check that all outputs are available and match the outputs in the block itself // exactly. Note that transactions with only provably unspendable outputs won't // have outputs available even in the block itself, so we handle that case // specially with outsEmpty. { CCoins outsEmpty; CCoinsModifier outs = view.ModifyCoins(hash); outs->ClearUnspendable(); CCoins outsBlock(tx, pindex->nHeight); // The CCoins serialization does not serialize negative numbers. // No network rules currently depend on the version here, so an inconsistency is harmless // but it must be corrected before txout nversion ever influences a network rule. if (outsBlock.nVersion < 0) outs->nVersion = outsBlock.nVersion; if (*outs != outsBlock) fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted"); // remove outputs outs->Clear(); } // restore inputs if (i > 0) { // not coinbases const CTxUndo &txundo = blockUndo.vtxundo[i-1]; if (txundo.vprevout.size() != tx.vin.size()) return error("DisconnectBlock() : transaction and undo data inconsistent"); for (unsigned int j = tx.vin.size(); j-- > 0;) { const COutPoint &out = tx.vin[j].prevout; const CTxInUndo &undo = txundo.vprevout[j]; CCoinsModifier coins = view.ModifyCoins(out.hash); if (undo.nHeight != 0) { // undo data contains height: this is the last output of the prevout tx being spent if (!coins->IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction"); coins->Clear(); coins->fCoinBase = undo.fCoinBase; coins->nHeight = undo.nHeight; coins->nVersion = undo.nVersion; } else { if (coins->IsPruned()) fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction"); } if (coins->IsAvailable(out.n)) fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output"); if (coins->vout.size() < out.n+1) coins->vout.resize(out.n+1); coins->vout[out.n] = undo.txout; } } } // move best block pointer to prevout block view.SetBestBlock(pindex->pprev->GetBlockHash()); if (pfClean) { *pfClean = fClean; return true; } else { return fClean; } } void static FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); CDiskBlockPos posOld(nLastBlockFile, 0); FILE *fileOld = OpenBlockFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize); FileCommit(fileOld); fclose(fileOld); } fileOld = OpenUndoFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize); FileCommit(fileOld); fclose(fileOld); } } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize); static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("bitcoin-scriptch"); scriptcheckqueue.Thread(); } static int64_t nTimeVerify = 0; static int64_t nTimeConnect = 0; static int64_t nTimeIndex = 0; static int64_t nTimeCallbacks = 0; static int64_t nTimeTotal = 0; bool ConnectBlock(CBlock& block, CValidationState& state, CBlockIndex* pindex, CCoinsViewCache& view, bool fJustCheck) { AssertLockHeld(cs_main); // Check it again in case a previous version let a bad block in if (!CheckBlock(block, state, !fJustCheck, !fJustCheck)) return false; // verify that the view's current state corresponds to the previous block uint256 hashPrevBlock = pindex->pprev == NULL ? uint256(0) : pindex->pprev->GetBlockHash(); assert(hashPrevBlock == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its transactions // (its coinbase is unspendable) if (block.GetHash() == Params().HashGenesisBlock()) { view.SetBestBlock(pindex->GetBlockHash()); return true; } bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate(); // Do not allow blocks that contain transactions which 'overwrite' older transactions, // unless those are already completely spent. // If such overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- even after // being sent to another address. // See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information. // This logic is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. // This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC. // Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the // two in the chain that violate it. This prevents exploiting the issue against nodes in their // initial block download. bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash. !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721"))); if (fEnforceBIP30) { BOOST_FOREACH(const CTransaction& tx, block.vtx) { const CCoins* coins = view.AccessCoins(tx.GetHash()); if (coins && !coins->IsPruned()) return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction"), REJECT_INVALID, "bad-txns-BIP30"); } } // BIP16 didn't become active until Apr 1 2012 int64_t nBIP16SwitchTime = 1333238400; bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime); unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE; CBlockUndo blockundo; CCheckQueueControl control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL); int64_t nTimeStart = GetTimeMicros(); CAmount nFees = 0; int nInputs = 0; unsigned int nSigOps = 0; CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size())); std::vector > vPos; vPos.reserve(block.vtx.size()); blockundo.vtxundo.reserve(block.vtx.size() - 1); for (unsigned int i = 0; i < block.vtx.size(); i++) { const CTransaction &tx = block.vtx[i]; nInputs += tx.vin.size(); nSigOps += GetLegacySigOpCount(tx); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops"), REJECT_INVALID, "bad-blk-sigops"); if (!tx.IsCoinBase()) { if (!view.HaveInputs(tx)) return state.DoS(100, error("ConnectBlock() : inputs missing/spent"), REJECT_INVALID, "bad-txns-inputs-missingorspent"); if (fStrictPayToScriptHash) { // Add in sigops done by pay-to-script-hash inputs; // this is to prevent a "rogue miner" from creating // an incredibly-expensive-to-validate block. nSigOps += GetP2SHSigOpCount(tx, view); if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("ConnectBlock() : too many sigops"), REJECT_INVALID, "bad-blk-sigops"); } nFees += view.GetValueIn(tx)-tx.GetValueOut(); std::vector vChecks; if (!CheckInputs(tx, state, view, fScriptChecks, flags, false, nScriptCheckThreads ? &vChecks : NULL)) return false; control.Add(vChecks); } CTxUndo undoDummy; if (i > 0) { blockundo.vtxundo.push_back(CTxUndo()); } UpdateCoins(tx, state, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight); vPos.push_back(std::make_pair(tx.GetHash(), pos)); pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); } int64_t nTime1 = GetTimeMicros(); nTimeConnect += nTime1 - nTimeStart; LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime1 - nTimeStart), 0.001 * (nTime1 - nTimeStart) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime1 - nTimeStart) / (nInputs-1), nTimeConnect * 0.000001); if (block.vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees)) return state.DoS(100, error("ConnectBlock() : coinbase pays too much (actual=%d vs limit=%d)", block.vtx[0].GetValueOut(), GetBlockValue(pindex->nHeight, nFees)), REJECT_INVALID, "bad-cb-amount"); if (!control.Wait()) return state.DoS(100, false); int64_t nTime2 = GetTimeMicros(); nTimeVerify += nTime2 - nTimeStart; LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime2 - nTimeStart), nInputs <= 1 ? 0 : 0.001 * (nTime2 - nTimeStart) / (nInputs-1), nTimeVerify * 0.000001); if (fJustCheck) return true; // Write undo information to disk if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS)) { if (pindex->GetUndoPos().IsNull()) { CDiskBlockPos pos; if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40)) return error("ConnectBlock() : FindUndoPos failed"); if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash())) return state.Abort("Failed to write undo data"); // update nUndoPos in block index pindex->nUndoPos = pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; } pindex->RaiseValidity(BLOCK_VALID_SCRIPTS); CDiskBlockIndex blockindex(pindex); if (!pblocktree->WriteBlockIndex(blockindex)) return state.Abort("Failed to write block index"); } if (fTxIndex) if (!pblocktree->WriteTxIndex(vPos)) return state.Abort("Failed to write transaction index"); // add this block to the view's block chain view.SetBestBlock(pindex->GetBlockHash()); int64_t nTime3 = GetTimeMicros(); nTimeIndex += nTime3 - nTime2; LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime3 - nTime2), nTimeIndex * 0.000001); // Watch for changes to the previous coinbase transaction. static uint256 hashPrevBestCoinBase; g_signals.UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = block.vtx[0].GetHash(); int64_t nTime4 = GetTimeMicros(); nTimeCallbacks += nTime4 - nTime3; LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime4 - nTime3), nTimeCallbacks * 0.000001); return true; } // Update the on-disk chain state. bool static WriteChainState(CValidationState &state, bool forceWrite=false) { static int64_t nLastWrite = 0; if (forceWrite || pcoinsTip->GetCacheSize() > nCoinCacheSize || (!IsInitialBlockDownload() && GetTimeMicros() > nLastWrite + 600*1000000)) { // Typical CCoins structures on disk are around 100 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is already // an overestimation, as most will delete an existing entry or // overwrite one. Still, use a conservative safety factor of 2. if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize())) return state.Error("out of disk space"); FlushBlockFile(); pblocktree->Sync(); if (!pcoinsTip->Flush()) return state.Abort("Failed to write to coin database"); nLastWrite = GetTimeMicros(); } return true; } // Update chainActive and related internal data structures. void static UpdateTip(CBlockIndex *pindexNew) { chainActive.SetTip(pindexNew); // New best block nTimeBestReceived = GetTime(); mempool.AddTransactionsUpdated(1); LogPrintf("UpdateTip: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f cache=%u\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainActive.Tip()), (unsigned int)pcoinsTip->GetCacheSize()); cvBlockChange.notify_all(); // Check the version of the last 100 blocks to see if we need to upgrade: static bool fWarned = false; if (!IsInitialBlockDownload() && !fWarned) { int nUpgraded = 0; const CBlockIndex* pindex = chainActive.Tip(); for (int i = 0; i < 100 && pindex != NULL; i++) { if (pindex->nVersion > CBlock::CURRENT_VERSION) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) LogPrintf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, (int)CBlock::CURRENT_VERSION); if (nUpgraded > 100/2) { // strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user: strMiscWarning = _("Warning: This version is obsolete, upgrade required!"); CAlert::Notify(strMiscWarning, true); fWarned = true; } } } // Disconnect chainActive's tip. bool static DisconnectTip(CValidationState &state) { CBlockIndex *pindexDelete = chainActive.Tip(); assert(pindexDelete); mempool.check(pcoinsTip); // Read block from disk. CBlock block; if (!ReadBlockFromDisk(block, pindexDelete)) return state.Abort("Failed to read block"); // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(pcoinsTip); if (!DisconnectBlock(block, state, pindexDelete, view)) return error("DisconnectTip() : DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString()); assert(view.Flush()); } LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Write the chain state to disk, if necessary. if (!WriteChainState(state)) return false; // Resurrect mempool transactions from the disconnected block. BOOST_FOREACH(const CTransaction &tx, block.vtx) { // ignore validation errors in resurrected transactions list removed; CValidationState stateDummy; if (!tx.IsCoinBase()) if (!AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL)) mempool.remove(tx, removed, true); } mempool.check(pcoinsTip); // Update chainActive and related variables. UpdateTip(pindexDelete->pprev); // Let wallets know transactions went from 1-confirmed to // 0-confirmed or conflicted: BOOST_FOREACH(const CTransaction &tx, block.vtx) { SyncWithWallets(tx, NULL); } return true; } static int64_t nTimeReadFromDisk = 0; static int64_t nTimeConnectTotal = 0; static int64_t nTimeFlush = 0; static int64_t nTimeChainState = 0; static int64_t nTimePostConnect = 0; // Connect a new block to chainActive. pblock is either NULL or a pointer to a CBlock // corresponding to pindexNew, to bypass loading it again from disk. bool static ConnectTip(CValidationState &state, CBlockIndex *pindexNew, CBlock *pblock) { assert(pindexNew->pprev == chainActive.Tip()); mempool.check(pcoinsTip); // Read block from disk. int64_t nTime1 = GetTimeMicros(); CBlock block; if (!pblock) { if (!ReadBlockFromDisk(block, pindexNew)) return state.Abort("Failed to read block"); pblock = █ } // Apply the block atomically to the chain state. int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1; int64_t nTime3; LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001); { CCoinsViewCache view(pcoinsTip); CInv inv(MSG_BLOCK, pindexNew->GetBlockHash()); bool rv = ConnectBlock(*pblock, state, pindexNew, view); g_signals.BlockChecked(*pblock, state); if (!rv) { if (state.IsInvalid()) InvalidBlockFound(pindexNew, state); return error("ConnectTip() : ConnectBlock %s failed", pindexNew->GetBlockHash().ToString()); } mapBlockSource.erase(inv.hash); nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2; LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001); assert(view.Flush()); } int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3; LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001); // Write the chain state to disk, if necessary. if (!WriteChainState(state)) return false; int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4; LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001); // Remove conflicting transactions from the mempool. list txConflicted; mempool.removeForBlock(pblock->vtx, pindexNew->nHeight, txConflicted); mempool.check(pcoinsTip); // Update chainActive & related variables. UpdateTip(pindexNew); // Tell wallet about transactions that went from mempool // to conflicted: BOOST_FOREACH(const CTransaction &tx, txConflicted) { SyncWithWallets(tx, NULL); } // ... and about transactions that got confirmed: BOOST_FOREACH(const CTransaction &tx, pblock->vtx) { SyncWithWallets(tx, pblock); } // Update best block in wallet (so we can detect restored wallets) // Emit this signal after the SyncWithWallets signals as the wallet relies on that everything up to this point has been synced if ((chainActive.Height() % 20160) == 0 || ((chainActive.Height() % 144) == 0 && !IsInitialBlockDownload())) g_signals.SetBestChain(chainActive.GetLocator()); int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1; LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001); LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001); return true; } // Return the tip of the chain with the most work in it, that isn't // known to be invalid (it's however far from certain to be valid). static CBlockIndex* FindMostWorkChain() { do { CBlockIndex *pindexNew = NULL; // Find the best candidate header. { std::set::reverse_iterator it = setBlockIndexCandidates.rbegin(); if (it == setBlockIndexCandidates.rend()) return NULL; pindexNew = *it; } // Check whether all blocks on the path between the currently active chain and the candidate are valid. // Just going until the active chain is an optimization, as we know all blocks in it are valid already. CBlockIndex *pindexTest = pindexNew; bool fInvalidAncestor = false; while (pindexTest && !chainActive.Contains(pindexTest)) { assert(pindexTest->nStatus & BLOCK_HAVE_DATA); assert(pindexTest->nChainTx || pindexTest->nHeight == 0); if (pindexTest->nStatus & BLOCK_FAILED_MASK) { // Candidate has an invalid ancestor, remove entire chain from the set. if (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork) pindexBestInvalid = pindexNew; CBlockIndex *pindexFailed = pindexNew; while (pindexTest != pindexFailed) { pindexFailed->nStatus |= BLOCK_FAILED_CHILD; setBlockIndexCandidates.erase(pindexFailed); pindexFailed = pindexFailed->pprev; } setBlockIndexCandidates.erase(pindexTest); fInvalidAncestor = true; break; } pindexTest = pindexTest->pprev; } if (!fInvalidAncestor) return pindexNew; } while(true); } // Try to make some progress towards making pindexMostWork the active block. // pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork. static bool ActivateBestChainStep(CValidationState &state, CBlockIndex *pindexMostWork, CBlock *pblock) { AssertLockHeld(cs_main); bool fInvalidFound = false; const CBlockIndex *pindexOldTip = chainActive.Tip(); const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork); // Disconnect active blocks which are no longer in the best chain. while (chainActive.Tip() && chainActive.Tip() != pindexFork) { if (!DisconnectTip(state)) return false; } // Build list of new blocks to connect. std::vector vpindexToConnect; bool fContinue = true; int nHeight = pindexFork ? pindexFork->nHeight : -1; while (fContinue && nHeight != pindexMostWork->nHeight) { // Don't iterate the entire list of potential improvements toward the best tip, as we likely only need // a few blocks along the way. int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight); vpindexToConnect.clear(); vpindexToConnect.reserve(nTargetHeight - nHeight); CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight); while (pindexIter && pindexIter->nHeight != nHeight) { vpindexToConnect.push_back(pindexIter); pindexIter = pindexIter->pprev; } nHeight = nTargetHeight; // Connect new blocks. BOOST_REVERSE_FOREACH(CBlockIndex *pindexConnect, vpindexToConnect) { if (!ConnectTip(state, pindexConnect, pindexConnect == pindexMostWork ? pblock : NULL)) { if (state.IsInvalid()) { // The block violates a consensus rule. if (!state.CorruptionPossible()) InvalidChainFound(vpindexToConnect.back()); state = CValidationState(); fInvalidFound = true; fContinue = false; break; } else { // A system error occurred (disk space, database error, ...). return false; } } else { // Delete all entries in setBlockIndexCandidates that are worse than our new current block. // Note that we can't delete the current block itself, as we may need to return to it later in case a // reorganization to a better block fails. std::set::iterator it = setBlockIndexCandidates.begin(); while (setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) { setBlockIndexCandidates.erase(it++); } // Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates. assert(!setBlockIndexCandidates.empty()); if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) { // We're in a better position than we were. Return temporarily to release the lock. fContinue = false; break; } } } } // Callbacks/notifications for a new best chain. if (fInvalidFound) CheckForkWarningConditionsOnNewFork(vpindexToConnect.back()); else CheckForkWarningConditions(); if (!pblocktree->Flush()) return state.Abort("Failed to sync block index"); return true; } // Make the best chain active, in multiple steps. The result is either failure // or an activated best chain. pblock is either NULL or a pointer to a block // that is already loaded (to avoid loading it again from disk). bool ActivateBestChain(CValidationState &state, CBlock *pblock) { CBlockIndex *pindexNewTip = NULL; CBlockIndex *pindexMostWork = NULL; do { boost::this_thread::interruption_point(); bool fInitialDownload; { LOCK(cs_main); pindexMostWork = FindMostWorkChain(); // Whether we have anything to do at all. if (pindexMostWork == NULL || pindexMostWork == chainActive.Tip()) return true; if (!ActivateBestChainStep(state, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : NULL)) return false; pindexNewTip = chainActive.Tip(); fInitialDownload = IsInitialBlockDownload(); } // When we reach this point, we switched to a new tip (stored in pindexNewTip). // Notifications/callbacks that can run without cs_main if (!fInitialDownload) { uint256 hashNewTip = pindexNewTip->GetBlockHash(); // Relay inventory, but don't relay old inventory during initial block download. int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate(); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (chainActive.Height() > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate)) pnode->PushInventory(CInv(MSG_BLOCK, hashNewTip)); } uiInterface.NotifyBlockTip(hashNewTip); } } while(pindexMostWork != chainActive.Tip()); return true; } CBlockIndex* AddToBlockIndex(const CBlockHeader& block) { // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end()) return it->second; // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(block); assert(pindexNew); // We assign the sequence id to blocks only when the full data is available, // to avoid miners withholding blocks but broadcasting headers, to get a // competitive advantage. pindexNew->nSequenceId = 0; BlockMap::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; pindexNew->BuildSkip(); } pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew); pindexNew->RaiseValidity(BLOCK_VALID_TREE); if (pindexBestHeader == NULL || pindexBestHeader->nChainWork < pindexNew->nChainWork) pindexBestHeader = pindexNew; // Ok if it fails, we'll download the header again next time. pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew)); return pindexNew; } // Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). bool ReceivedBlockTransactions(const CBlock &block, CValidationState& state, CBlockIndex *pindexNew, const CDiskBlockPos& pos) { pindexNew->nTx = block.vtx.size(); pindexNew->nChainTx = 0; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus |= BLOCK_HAVE_DATA; pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS); { LOCK(cs_nBlockSequenceId); pindexNew->nSequenceId = nBlockSequenceId++; } if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) { // If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS. deque queue; queue.push_back(pindexNew); // Recursively process any descendant blocks that now may be eligible to be connected. while (!queue.empty()) { CBlockIndex *pindex = queue.front(); queue.pop_front(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; setBlockIndexCandidates.insert(pindex); std::pair::iterator, std::multimap::iterator> range = mapBlocksUnlinked.equal_range(pindex); while (range.first != range.second) { std::multimap::iterator it = range.first; queue.push_back(it->second); range.first++; mapBlocksUnlinked.erase(it); } if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex))) return state.Abort("Failed to write block index"); } } else { if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) { mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew)); } if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew))) return state.Abort("Failed to write block index"); } return true; } bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false) { bool fUpdatedLast = false; LOCK(cs_LastBlockFile); unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } if (!fKnown) { while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { LogPrintf("Leaving block file %i: %s\n", nFile, vinfoBlockFile[nFile].ToString()); FlushBlockFile(true); nFile++; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } fUpdatedLast = true; } pos.nFile = nFile; pos.nPos = vinfoBlockFile[nFile].nSize; } nLastBlockFile = nFile; vinfoBlockFile[nFile].nSize += nAddSize; vinfoBlockFile[nFile].AddBlock(nHeight, nTime); if (!fKnown) { unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenBlockFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } } if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, vinfoBlockFile[nFile])) return state.Abort("Failed to write file info"); if (fUpdatedLast) pblocktree->WriteLastBlockFile(nLastBlockFile); return true; } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); unsigned int nNewSize; pos.nPos = vinfoBlockFile[nFile].nUndoSize; nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize; if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, vinfoBlockFile[nLastBlockFile])) { return state.Abort("Failed to write block info"); } unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenUndoFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } return true; } bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, bool fCheckPOW) { // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits)) return state.DoS(50, error("CheckBlockHeader() : proof of work failed"), REJECT_INVALID, "high-hash"); // Check timestamp if (block.GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60) return state.Invalid(error("CheckBlockHeader() : block timestamp too far in the future"), REJECT_INVALID, "time-too-new"); return true; } bool CheckBlock(const CBlock& block, CValidationState& state, bool fCheckPOW, bool fCheckMerkleRoot) { // These are checks that are independent of context. // Check that the header is valid (particularly PoW). This is mostly // redundant with the call in AcceptBlockHeader. if (!CheckBlockHeader(block, state, fCheckPOW)) return false; // Check the merkle root. if (fCheckMerkleRoot) { bool mutated; uint256 hashMerkleRoot2 = block.BuildMerkleTree(&mutated); if (block.hashMerkleRoot != hashMerkleRoot2) return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"), REJECT_INVALID, "bad-txnmrklroot", true); // Check for merkle tree malleability (CVE-2012-2459): repeating sequences // of transactions in a block without affecting the merkle root of a block, // while still invalidating it. if (mutated) return state.DoS(100, error("CheckBlock() : duplicate transaction"), REJECT_INVALID, "bad-txns-duplicate", true); } // All potential-corruption validation must be done before we do any // transaction validation, as otherwise we may mark the header as invalid // because we receive the wrong transactions for it. // Size limits if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return state.DoS(100, error("CheckBlock() : size limits failed"), REJECT_INVALID, "bad-blk-length"); // First transaction must be coinbase, the rest must not be if (block.vtx.empty() || !block.vtx[0].IsCoinBase()) return state.DoS(100, error("CheckBlock() : first tx is not coinbase"), REJECT_INVALID, "bad-cb-missing"); for (unsigned int i = 1; i < block.vtx.size(); i++) if (block.vtx[i].IsCoinBase()) return state.DoS(100, error("CheckBlock() : more than one coinbase"), REJECT_INVALID, "bad-cb-multiple"); // Check transactions BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!CheckTransaction(tx, state)) return error("CheckBlock() : CheckTransaction failed"); unsigned int nSigOps = 0; BOOST_FOREACH(const CTransaction& tx, block.vtx) { nSigOps += GetLegacySigOpCount(tx); } if (nSigOps > MAX_BLOCK_SIGOPS) return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"), REJECT_INVALID, "bad-blk-sigops", true); return true; } bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, CBlockIndex** ppindex) { AssertLockHeld(cs_main); // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator miSelf = mapBlockIndex.find(hash); CBlockIndex *pindex = NULL; if (miSelf != mapBlockIndex.end()) { // Block header is already known. pindex = miSelf->second; if (ppindex) *ppindex = pindex; if (pindex->nStatus & BLOCK_FAILED_MASK) return state.Invalid(error("%s : block is marked invalid", __func__), 0, "duplicate"); return true; } if (!CheckBlockHeader(block, state)) return false; // Get prev block index CBlockIndex* pindexPrev = NULL; int nHeight = 0; if (hash != Params().HashGenesisBlock()) { BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) return state.DoS(10, error("%s : prev block not found", __func__), 0, "bad-prevblk"); pindexPrev = (*mi).second; nHeight = pindexPrev->nHeight+1; // Check proof of work if ((!Params().SkipProofOfWorkCheck()) && (block.nBits != GetNextWorkRequired(pindexPrev, &block))) return state.DoS(100, error("%s : incorrect proof of work", __func__), REJECT_INVALID, "bad-diffbits"); // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) return state.Invalid(error("%s : block's timestamp is too early", __func__), REJECT_INVALID, "time-too-old"); // Check that the block chain matches the known block chain up to a checkpoint if (!Checkpoints::CheckBlock(nHeight, hash)) return state.DoS(100, error("%s : rejected by checkpoint lock-in at %d", __func__, nHeight), REJECT_CHECKPOINT, "checkpoint mismatch"); // Don't accept any forks from the main chain prior to last checkpoint CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(); if (pcheckpoint && nHeight < pcheckpoint->nHeight) return state.DoS(100, error("%s : forked chain older than last checkpoint (height %d)", __func__, nHeight)); // Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded: if (block.nVersion < 2 && CBlockIndex::IsSuperMajority(2, pindexPrev, Params().RejectBlockOutdatedMajority())) { return state.Invalid(error("%s : rejected nVersion=1 block", __func__), REJECT_OBSOLETE, "bad-version"); } } if (pindex == NULL) pindex = AddToBlockIndex(block); if (ppindex) *ppindex = pindex; return true; } bool AcceptBlock(CBlock& block, CValidationState& state, CBlockIndex** ppindex, CDiskBlockPos* dbp) { AssertLockHeld(cs_main); CBlockIndex *&pindex = *ppindex; if (!AcceptBlockHeader(block, state, &pindex)) return false; if (pindex->nStatus & BLOCK_HAVE_DATA) { // TODO: deal better with duplicate blocks. // return state.DoS(20, error("AcceptBlock() : already have block %d %s", pindex->nHeight, pindex->GetBlockHash().ToString()), REJECT_DUPLICATE, "duplicate"); return true; } if (!CheckBlock(block, state)) { if (state.IsInvalid() && !state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; } return false; } int nHeight = pindex->nHeight; // Check that all transactions are finalized BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!IsFinalTx(tx, nHeight, block.GetBlockTime())) { pindex->nStatus |= BLOCK_FAILED_VALID; return state.DoS(10, error("AcceptBlock() : contains a non-final transaction"), REJECT_INVALID, "bad-txns-nonfinal"); } // Enforce block.nVersion=2 rule that the coinbase starts with serialized block height // if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet): if (block.nVersion >= 2 && CBlockIndex::IsSuperMajority(2, pindex->pprev, Params().EnforceBlockUpgradeMajority())) { CScript expect = CScript() << nHeight; if (block.vtx[0].vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) { pindex->nStatus |= BLOCK_FAILED_VALID; return state.DoS(100, error("AcceptBlock() : block height mismatch in coinbase"), REJECT_INVALID, "bad-cb-height"); } } // Write block to history file try { unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; if (dbp != NULL) blockPos = *dbp; if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != NULL)) return error("AcceptBlock() : FindBlockPos failed"); if (dbp == NULL) if (!WriteBlockToDisk(block, blockPos)) return state.Abort("Failed to write block"); if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) return error("AcceptBlock() : ReceivedBlockTransactions failed"); } catch(std::runtime_error &e) { return state.Abort(std::string("System error: ") + e.what()); } return true; } bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired) { unsigned int nToCheck = Params().ToCheckBlockUpgradeMajority(); unsigned int nFound = 0; for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++) { if (pstart->nVersion >= minVersion) ++nFound; pstart = pstart->pprev; } return (nFound >= nRequired); } /** Turn the lowest '1' bit in the binary representation of a number into a '0'. */ int static inline InvertLowestOne(int n) { return n & (n - 1); } /** Compute what height to jump back to with the CBlockIndex::pskip pointer. */ int static inline GetSkipHeight(int height) { if (height < 2) return 0; // Determine which height to jump back to. Any number strictly lower than height is acceptable, // but the following expression seems to perform well in simulations (max 110 steps to go back // up to 2**18 blocks). return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height); } CBlockIndex* CBlockIndex::GetAncestor(int height) { if (height > nHeight || height < 0) return NULL; CBlockIndex* pindexWalk = this; int heightWalk = nHeight; while (heightWalk > height) { int heightSkip = GetSkipHeight(heightWalk); int heightSkipPrev = GetSkipHeight(heightWalk - 1); if (heightSkip == height || (heightSkip > height && !(heightSkipPrev < heightSkip - 2 && heightSkipPrev >= height))) { // Only follow pskip if pprev->pskip isn't better than pskip->pprev. pindexWalk = pindexWalk->pskip; heightWalk = heightSkip; } else { pindexWalk = pindexWalk->pprev; heightWalk--; } } return pindexWalk; } const CBlockIndex* CBlockIndex::GetAncestor(int height) const { return const_cast(this)->GetAncestor(height); } void CBlockIndex::BuildSkip() { if (pprev) pskip = pprev->GetAncestor(GetSkipHeight(nHeight)); } bool ProcessNewBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp) { // Preliminary checks bool checked = CheckBlock(*pblock, state); { LOCK(cs_main); MarkBlockAsReceived(pblock->GetHash()); if (!checked) { return error("%s : CheckBlock FAILED", __func__); } // Store to disk CBlockIndex *pindex = NULL; bool ret = AcceptBlock(*pblock, state, &pindex, dbp); if (pindex && pfrom) { mapBlockSource[pindex->GetBlockHash()] = pfrom->GetId(); } if (!ret) return error("%s : AcceptBlock FAILED", __func__); } if (!ActivateBestChain(state, pblock)) return error("%s : ActivateBestChain failed", __func__); return true; } CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter) { header = block.GetBlockHeader(); vector vMatch; vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); for (unsigned int i = 0; i < block.vtx.size(); i++) { const uint256& hash = block.vtx[i].GetHash(); if (filter.IsRelevantAndUpdate(block.vtx[i])) { vMatch.push_back(true); vMatchedTxn.push_back(make_pair(i, hash)); } else vMatch.push_back(false); vHashes.push_back(hash); } txn = CPartialMerkleTree(vHashes, vMatch); } uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector &vTxid) { if (height == 0) { // hash at height 0 is the txids themself return vTxid[pos]; } else { // calculate left hash uint256 left = CalcHash(height-1, pos*2, vTxid), right; // calculate right hash if not beyong the end of the array - copy left hash otherwise1 if (pos*2+1 < CalcTreeWidth(height-1)) right = CalcHash(height-1, pos*2+1, vTxid); else right = left; // combine subhashes return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch) { // determine whether this node is the parent of at least one matched txid bool fParentOfMatch = false; for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++) fParentOfMatch |= vMatch[p]; // store as flag bit vBits.push_back(fParentOfMatch); if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, store hash and stop vHash.push_back(CalcHash(height, pos, vTxid)); } else { // otherwise, don't store any hash, but descend into the subtrees TraverseAndBuild(height-1, pos*2, vTxid, vMatch); if (pos*2+1 < CalcTreeWidth(height-1)) TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch); } } uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch) { if (nBitsUsed >= vBits.size()) { // overflowed the bits array - failure fBad = true; return 0; } bool fParentOfMatch = vBits[nBitsUsed++]; if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, use stored hash and do not descend if (nHashUsed >= vHash.size()) { // overflowed the hash array - failure fBad = true; return 0; } const uint256 &hash = vHash[nHashUsed++]; if (height==0 && fParentOfMatch) // in case of height 0, we have a matched txid vMatch.push_back(hash); return hash; } else { // otherwise, descend into the subtrees to extract matched txids and hashes uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch), right; if (pos*2+1 < CalcTreeWidth(height-1)) right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch); else right = left; // and combine them before returning return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } } CPartialMerkleTree::CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch) : nTransactions(vTxid.size()), fBad(false) { // reset state vBits.clear(); vHash.clear(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree TraverseAndBuild(nHeight, 0, vTxid, vMatch); } CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} uint256 CPartialMerkleTree::ExtractMatches(std::vector &vMatch) { vMatch.clear(); // An empty set will not work if (nTransactions == 0) return 0; // check for excessively high numbers of transactions if (nTransactions > MAX_BLOCK_SIZE / 60) // 60 is the lower bound for the size of a serialized CTransaction return 0; // there can never be more hashes provided than one for every txid if (vHash.size() > nTransactions) return 0; // there must be at least one bit per node in the partial tree, and at least one node per hash if (vBits.size() < vHash.size()) return 0; // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree unsigned int nBitsUsed = 0, nHashUsed = 0; uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch); // verify that no problems occured during the tree traversal if (fBad) return 0; // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence) if ((nBitsUsed+7)/8 != (vBits.size()+7)/8) return 0; // verify that all hashes were consumed if (nHashUsed != vHash.size()) return 0; return hashMerkleRoot; } bool AbortNode(const std::string &strMessage, const std::string &userMessage) { strMiscWarning = strMessage; LogPrintf("*** %s\n", strMessage); uiInterface.ThreadSafeMessageBox( userMessage.empty() ? _("Error: A fatal internal error occured, see debug.log for details") : userMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } bool CheckDiskSpace(uint64_t nAdditionalBytes) { uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) return AbortNode("Disk space is low!", _("Error: Disk space is low!")); return true; } FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly) { if (pos.IsNull()) return NULL; boost::filesystem::path path = GetBlockPosFilename(pos, prefix); boost::filesystem::create_directories(path.parent_path()); FILE* file = fopen(path.string().c_str(), "rb+"); if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+"); if (!file) { LogPrintf("Unable to open file %s\n", path.string()); return NULL; } if (pos.nPos) { if (fseek(file, pos.nPos, SEEK_SET)) { LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string()); fclose(file); return NULL; } } return file; } FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "blk", fReadOnly); } FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "rev", fReadOnly); } boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix) { return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile); } CBlockIndex * InsertBlockIndex(uint256 hash) { if (hash == 0) return NULL; // Return existing BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) return (*mi).second; // Create new CBlockIndex* pindexNew = new CBlockIndex(); if (!pindexNew) throw runtime_error("LoadBlockIndex() : new CBlockIndex failed"); mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool static LoadBlockIndexDB() { if (!pblocktree->LoadBlockIndexGuts()) return false; boost::this_thread::interruption_point(); // Calculate nChainWork vector > vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight) { CBlockIndex* pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex); if (pindex->nStatus & BLOCK_HAVE_DATA) { if (pindex->pprev) { if (pindex->pprev->nChainTx) { pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx; } else { pindex->nChainTx = 0; mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex)); } } else { pindex->nChainTx = pindex->nTx; } } if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == NULL)) setBlockIndexCandidates.insert(pindex); if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork)) pindexBestInvalid = pindex; if (pindex->pprev) pindex->BuildSkip(); if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == NULL || CBlockIndexWorkComparator()(pindexBestHeader, pindex))) pindexBestHeader = pindex; } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); vinfoBlockFile.resize(nLastBlockFile + 1); LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile); for (int nFile = 0; nFile <= nLastBlockFile; nFile++) { pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]); } LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString()); for (int nFile = nLastBlockFile + 1; true; nFile++) { CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(nFile, info)) { vinfoBlockFile.push_back(info); } else { break; } } // Check presence of blk files LogPrintf("Checking all blk files are present...\n"); set setBlkDataFiles; BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex) { CBlockIndex* pindex = item.second; if (pindex->nStatus & BLOCK_HAVE_DATA) { setBlkDataFiles.insert(pindex->nFile); } } for (std::set::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) { CDiskBlockPos pos(*it, 0); if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) { return false; } } // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); fReindex |= fReindexing; // Check whether we have a transaction index pblocktree->ReadFlag("txindex", fTxIndex); LogPrintf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled"); // Load pointer to end of best chain BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock()); if (it == mapBlockIndex.end()) return true; chainActive.SetTip(it->second); LogPrintf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s progress=%f\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), Checkpoints::GuessVerificationProgress(chainActive.Tip())); return true; } CVerifyDB::CVerifyDB() { uiInterface.ShowProgress(_("Verifying blocks..."), 0); } CVerifyDB::~CVerifyDB() { uiInterface.ShowProgress("", 100); } bool CVerifyDB::VerifyDB(CCoinsView *coinsview, int nCheckLevel, int nCheckDepth) { LOCK(cs_main); if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL) return true; // Verify blocks in the best chain if (nCheckDepth <= 0) nCheckDepth = 1000000000; // suffices until the year 19000 if (nCheckDepth > chainActive.Height()) nCheckDepth = chainActive.Height(); nCheckLevel = std::max(0, std::min(4, nCheckLevel)); LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); CCoinsViewCache coins(coinsview); CBlockIndex* pindexState = chainActive.Tip(); CBlockIndex* pindexFailure = NULL; int nGoodTransactions = 0; CValidationState state; for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))))); if (pindex->nHeight < chainActive.Height()-nCheckDepth) break; CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(block, state)) return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; CDiskBlockPos pos = pindex->GetUndoPos(); if (!pos.IsNull()) { if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash())) return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); } } // check level 3: check for inconsistencies during memory-only disconnect of tip blocks if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= nCoinCacheSize) { bool fClean = true; if (!DisconnectBlock(block, state, pindex, coins, &fClean)) return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); pindexState = pindex->pprev; if (!fClean) { nGoodTransactions = 0; pindexFailure = pindex; } else nGoodTransactions += block.vtx.size(); } } if (pindexFailure) return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions); // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { CBlockIndex *pindex = pindexState; while (pindex != chainActive.Tip()) { boost::this_thread::interruption_point(); uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50)))); pindex = chainActive.Next(pindex); CBlock block; if (!ReadBlockFromDisk(block, pindex)) return error("VerifyDB() : *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); if (!ConnectBlock(block, state, pindex, coins)) return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } } LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions); return true; } void UnloadBlockIndex() { mapBlockIndex.clear(); setBlockIndexCandidates.clear(); chainActive.SetTip(NULL); pindexBestInvalid = NULL; } bool LoadBlockIndex() { // Load block index from databases if (!fReindex && !LoadBlockIndexDB()) return false; return true; } bool InitBlockIndex() { LOCK(cs_main); // Check whether we're already initialized if (chainActive.Genesis() != NULL) return true; // Use the provided setting for -txindex in the new database fTxIndex = GetBoolArg("-txindex", false); pblocktree->WriteFlag("txindex", fTxIndex); LogPrintf("Initializing databases...\n"); // Only add the genesis block if not reindexing (in which case we reuse the one already on disk) if (!fReindex) { try { CBlock &block = const_cast(Params().GenesisBlock()); // Start new block file unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; CValidationState state; if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.GetBlockTime())) return error("LoadBlockIndex() : FindBlockPos failed"); if (!WriteBlockToDisk(block, blockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); CBlockIndex *pindex = AddToBlockIndex(block); if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) return error("LoadBlockIndex() : genesis block not accepted"); if (!ActivateBestChain(state, &block)) return error("LoadBlockIndex() : genesis block cannot be activated"); // Force a chainstate write so that when we VerifyDB in a moment, it doesnt check stale data return WriteChainState(state, true); } catch(std::runtime_error &e) { return error("LoadBlockIndex() : failed to initialize block database: %s", e.what()); } } return true; } void PrintBlockTree() { AssertLockHeld(cs_main); // pre-compute tree structure map > mapNext; for (BlockMap::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, chainActive.Genesis())); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) LogPrintf("| "); LogPrintf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) LogPrintf("| "); LogPrintf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) LogPrintf("| "); // print item CBlock block; ReadBlockFromDisk(block, pindex); LogPrintf("%d (blk%05u.dat:0x%x) %s tx %u\n", pindex->nHeight, pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", block.GetBlockTime()), block.vtx.size()); // put the main time-chain first vector& vNext = mapNext[pindex]; for (unsigned int i = 0; i < vNext.size(); i++) { if (chainActive.Next(vNext[i])) { swap(vNext[0], vNext[i]); break; } } // iterate children for (unsigned int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp) { // Map of disk positions for blocks with unknown parent (only used for reindex) static std::multimap mapBlocksUnknownParent; int64_t nStart = GetTimeMillis(); int nLoaded = 0; try { // This takes over fileIn and calls fclose() on it in the CBufferedFile destructor CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION); uint64_t nRewind = blkdat.GetPos(); while (!blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); nRewind++; // start one byte further next time, in case of failure blkdat.SetLimit(); // remove former limit unsigned int nSize = 0; try { // locate a header unsigned char buf[MESSAGE_START_SIZE]; blkdat.FindByte(Params().MessageStart()[0]); nRewind = blkdat.GetPos()+1; blkdat >> FLATDATA(buf); if (memcmp(buf, Params().MessageStart(), MESSAGE_START_SIZE)) continue; // read size blkdat >> nSize; if (nSize < 80 || nSize > MAX_BLOCK_SIZE) continue; } catch (const std::exception &) { // no valid block header found; don't complain break; } try { // read block uint64_t nBlockPos = blkdat.GetPos(); if (dbp) dbp->nPos = nBlockPos; blkdat.SetLimit(nBlockPos + nSize); blkdat.SetPos(nBlockPos); CBlock block; blkdat >> block; nRewind = blkdat.GetPos(); // detect out of order blocks, and store them for later uint256 hash = block.GetHash(); if (hash != Params().HashGenesisBlock() && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) { LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(), block.hashPrevBlock.ToString()); if (dbp) mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp)); continue; } // process in case the block isn't known yet if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) { CValidationState state; if (ProcessNewBlock(state, NULL, &block, dbp)) nLoaded++; if (state.IsError()) break; } else if (hash != Params().HashGenesisBlock() && mapBlockIndex[hash]->nHeight % 1000 == 0) { LogPrintf("Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight); } // Recursively process earlier encountered successors of this block deque queue; queue.push_back(hash); while (!queue.empty()) { uint256 head = queue.front(); queue.pop_front(); std::pair::iterator, std::multimap::iterator> range = mapBlocksUnknownParent.equal_range(head); while (range.first != range.second) { std::multimap::iterator it = range.first; if (ReadBlockFromDisk(block, it->second)) { LogPrintf("%s: Processing out of order child %s of %s\n", __func__, block.GetHash().ToString(), head.ToString()); CValidationState dummy; if (ProcessNewBlock(dummy, NULL, &block, &it->second)) { nLoaded++; queue.push_back(block.GetHash()); } } range.first++; mapBlocksUnknownParent.erase(it); } } } catch (std::exception &e) { LogPrintf("%s : Deserialize or I/O error - %s", __func__, e.what()); } } } catch(std::runtime_error &e) { AbortNode(std::string("System error: ") + e.what()); } if (nLoaded > 0) LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart); return nLoaded > 0; } ////////////////////////////////////////////////////////////////////////////// // // CAlert // string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (!CLIENT_VERSION_IS_RELEASE) strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications"); if (GetBoolArg("-testsafemode", false)) strStatusBar = strRPC = "testsafemode enabled"; // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { nPriority = 1000; strStatusBar = strMiscWarning; } if (fLargeWorkForkFound) { nPriority = 2000; strStatusBar = strRPC = _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues."); } else if (fLargeWorkInvalidChainFound) { nPriority = 2000; strStatusBar = strRPC = _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade."); } // Alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings() : invalid parameter"); return "error"; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(const CInv& inv) { switch (inv.type) { case MSG_TX: { bool txInMap = false; txInMap = mempool.exists(inv.hash); return txInMap || mapOrphanTransactions.count(inv.hash) || pcoinsTip->HaveCoins(inv.hash); } case MSG_BLOCK: return mapBlockIndex.count(inv.hash); } // Don't know what it is, just say we already got one return true; } void static ProcessGetData(CNode* pfrom) { std::deque::iterator it = pfrom->vRecvGetData.begin(); vector vNotFound; LOCK(cs_main); while (it != pfrom->vRecvGetData.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; const CInv &inv = *it; { boost::this_thread::interruption_point(); it++; if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK) { bool send = false; BlockMap::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { // If the requested block is at a height below our last // checkpoint, only serve it if it's in the checkpointed chain int nHeight = mi->second->nHeight; CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(); if (pcheckpoint && nHeight < pcheckpoint->nHeight) { if (!chainActive.Contains(mi->second)) { LogPrintf("ProcessGetData(): ignoring request for old block that isn't in the main chain\n"); } else { send = true; } } else { send = true; } } if (send) { // Send block from disk CBlock block; if (!ReadBlockFromDisk(block, (*mi).second)) assert(!"cannot load block from disk"); if (inv.type == MSG_BLOCK) pfrom->PushMessage("block", block); else // MSG_FILTERED_BLOCK) { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { CMerkleBlock merkleBlock(block, *pfrom->pfilter); pfrom->PushMessage("merkleblock", merkleBlock); // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see // This avoids hurting performance by pointlessly requiring a round-trip // Note that there is currently no way for a node to request any single transactions we didnt send here - // they must either disconnect and retry or request the full block. // Thus, the protocol spec specified allows for us to provide duplicate txn here, // however we MUST always provide at least what the remote peer needs typedef std::pair PairType; BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn) if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second))) pfrom->PushMessage("tx", block.vtx[pair.first]); } // else // no response } // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash())); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory bool pushed = false; { LOCK(cs_mapRelay); map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) { pfrom->PushMessage(inv.GetCommand(), (*mi).second); pushed = true; } } if (!pushed && inv.type == MSG_TX) { CTransaction tx; if (mempool.lookup(inv.hash, tx)) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << tx; pfrom->PushMessage("tx", ss); pushed = true; } } if (!pushed) { vNotFound.push_back(inv); } } // Track requests for our stuff. g_signals.Inventory(inv.hash); if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK) break; } } pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it doesn't // have to wait around forever. Currently only SPV clients actually care // about this message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want to // do that because they want to know about (and store and rebroadcast and // risk analyze) the dependencies of transactions relevant to them, without // having to download the entire memory pool. pfrom->PushMessage("notfound", vNotFound); } } bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived) { RandAddSeedPerfmon(); LogPrint("net", "received: %s (%u bytes) peer=%d\n", strCommand, vRecv.size(), pfrom->id); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) { pfrom->PushMessage("reject", strCommand, REJECT_DUPLICATE, string("Duplicate version message")); Misbehaving(pfrom->GetId(), 1); return false; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrintf("peer=%d using obsolete version %i; disconnecting\n", pfrom->id, pfrom->nVersion); pfrom->PushMessage("reject", strCommand, REJECT_OBSOLETE, strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION)); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (!vRecv.empty()) vRecv >> addrFrom >> nNonce; if (!vRecv.empty()) { vRecv >> LIMITED_STRING(pfrom->strSubVer, 256); pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer); } if (!vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (!vRecv.empty()) vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message else pfrom->fRelayTxes = true; // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString()); pfrom->fDisconnect = true; return true; } pfrom->addrLocal = addrMe; if (pfrom->fInbound && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Be shy and don't send version until we hear if (pfrom->fInbound) pfrom->PushVersion(); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); // Potentially mark this peer as a preferred download peer. UpdatePreferredDownload(pfrom, State(pfrom->GetId())); // Change version pfrom->PushMessage("verack"); pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (fListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr); if (addr.IsRoutable()) { pfrom->PushAddress(addr); } else if (IsPeerAddrLocalGood(pfrom)) { addr.SetIP(pfrom->addrLocal); pfrom->PushAddress(addr); } } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } addrman.Good(pfrom->addr); } else { if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom) { addrman.Add(addrFrom, addrFrom); addrman.Good(addrFrom); } } // Relay alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); } pfrom->fSuccessfullyConnected = true; string remoteAddr; if (fLogIPs) remoteAddr = ", peeraddr=" + pfrom->addr.ToString(); LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s\n", pfrom->cleanSubVer, pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), pfrom->id, remoteAddr); AddTimeData(pfrom->addr, nTime); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom->GetId(), 1); return false; } else if (strCommand == "verack") { pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000) return true; if (vAddr.size() > 1000) { Misbehaving(pfrom->GetId(), 20); return error("message addr size() = %u", vAddr.size()); } // Store the new addresses vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { boost::this_thread::interruption_point(); if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes { LOCK(cs_vNodes); // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint64_t hashAddr = addr.GetHash(); uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60)); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->nVersion < CADDR_TIME_VERSION) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s) for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } // Do not store addresses outside our network if (fReachable) vAddrOk.push_back(addr); } addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60); if (vAddr.size() < 1000) pfrom->fGetAddr = false; if (pfrom->fOneShot) pfrom->fDisconnect = true; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom->GetId(), 20); return error("message inv size() = %u", vInv.size()); } LOCK(cs_main); std::vector vToFetch; for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) { const CInv &inv = vInv[nInv]; boost::this_thread::interruption_point(); pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(inv); LogPrint("net", "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->id); if (!fAlreadyHave && !fImporting && !fReindex && inv.type != MSG_BLOCK) pfrom->AskFor(inv); if (inv.type == MSG_BLOCK) { UpdateBlockAvailability(pfrom->GetId(), inv.hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(inv.hash)) { // First request the headers preceeding the announced block. In the normal fully-synced // case where a new block is announced that succeeds the current tip (no reorganization), // there are no such headers. // Secondly, and only when we are close to being synced, we request the announced block directly, // to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the // time the block arrives, the header chain leading up to it is already validated. Not // doing this will result in the received block being rejected as an orphan in case it is // not a direct successor. pfrom->PushMessage("getheaders", chainActive.GetLocator(pindexBestHeader), inv.hash); if (chainActive.Tip()->GetBlockTime() > GetAdjustedTime() - Params().TargetSpacing() * 20) { vToFetch.push_back(inv); // Mark block as in flight already, even though the actual "getdata" message only goes out // later (within the same cs_main lock, though). MarkBlockAsInFlight(pfrom->GetId(), inv.hash); } LogPrint("net", "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, inv.hash.ToString(), pfrom->id); } } // Track requests for our stuff g_signals.Inventory(inv.hash); if (pfrom->nSendSize > (SendBufferSize() * 2)) { Misbehaving(pfrom->GetId(), 50); return error("send buffer size() = %u", pfrom->nSendSize); } } if (!vToFetch.empty()) pfrom->PushMessage("getdata", vToFetch); } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom->GetId(), 20); return error("message getdata size() = %u", vInv.size()); } if (fDebug || (vInv.size() != 1)) LogPrint("net", "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->id); if ((fDebug && vInv.size() > 0) || (vInv.size() == 1)) LogPrint("net", "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->id); pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(pfrom); } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); // Find the last block the caller has in the main chain CBlockIndex* pindex = FindForkInGlobalIndex(chainActive, locator); // Send the rest of the chain if (pindex) pindex = chainActive.Next(pindex); int nLimit = 500; LogPrint("net", "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop==uint256(0) ? "end" : hashStop.ToString(), nLimit, pfrom->id); for (; pindex; pindex = chainActive.Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; LOCK(cs_main); CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block BlockMap::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = FindForkInGlobalIndex(chainActive, locator); if (pindex) pindex = chainActive.Next(pindex); } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint("net", "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), pfrom->id); for (; pindex; pindex = chainActive.Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx") { vector vWorkQueue; vector vEraseQueue; CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); LOCK(cs_main); bool fMissingInputs = false; CValidationState state; mapAlreadyAskedFor.erase(inv); if (AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs)) { mempool.check(pcoinsTip); RelayTransaction(tx); vWorkQueue.push_back(inv.hash); vEraseQueue.push_back(inv.hash); LogPrint("mempool", "AcceptToMemoryPool: peer=%d %s : accepted %s (poolsz %u)\n", pfrom->id, pfrom->cleanSubVer, tx.GetHash().ToString(), mempool.mapTx.size()); // Recursively process any orphan transactions that depended on this one set setMisbehaving; for (unsigned int i = 0; i < vWorkQueue.size(); i++) { map >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]); if (itByPrev == mapOrphanTransactionsByPrev.end()) continue; for (set::iterator mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const uint256& orphanHash = *mi; const CTransaction& orphanTx = mapOrphanTransactions[orphanHash].tx; NodeId fromPeer = mapOrphanTransactions[orphanHash].fromPeer; bool fMissingInputs2 = false; // Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan // resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get // anyone relaying LegitTxX banned) CValidationState stateDummy; vEraseQueue.push_back(orphanHash); if (setMisbehaving.count(fromPeer)) continue; if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2)) { LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString()); RelayTransaction(orphanTx); vWorkQueue.push_back(orphanHash); } else if (!fMissingInputs2) { int nDos = 0; if (stateDummy.IsInvalid(nDos) && nDos > 0) { // Punish peer that gave us an invalid orphan tx Misbehaving(fromPeer, nDos); setMisbehaving.insert(fromPeer); LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString()); } // too-little-fee orphan LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString()); } mempool.check(pcoinsTip); } } BOOST_FOREACH(uint256 hash, vEraseQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { AddOrphanTx(tx, pfrom->GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow unbounded unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted); } else if (pfrom->fWhitelisted) { // Always relay transactions received from whitelisted peers, even // if they are already in the mempool (allowing the node to function // as a gateway for nodes hidden behind it). RelayTransaction(tx); } int nDoS = 0; if (state.IsInvalid(nDoS)) { LogPrint("mempool", "%s from peer=%d %s was not accepted into the memory pool: %s\n", tx.GetHash().ToString(), pfrom->id, pfrom->cleanSubVer, state.GetRejectReason()); pfrom->PushMessage("reject", strCommand, state.GetRejectCode(), state.GetRejectReason(), inv.hash); if (nDoS > 0) Misbehaving(pfrom->GetId(), nDoS); } } else if (strCommand == "headers" && !fImporting && !fReindex) // Ignore headers received while importing { std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom->GetId(), 20); return error("headers message size = %u", nCount); } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; ReadCompactSize(vRecv); // ignore tx count; assume it is 0. } LOCK(cs_main); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return true; } CBlockIndex *pindexLast = NULL; BOOST_FOREACH(const CBlockHeader& header, headers) { CValidationState state; if (pindexLast != NULL && header.hashPrevBlock != pindexLast->GetBlockHash()) { Misbehaving(pfrom->GetId(), 20); return error("non-continuous headers sequence"); } if (!AcceptBlockHeader(header, state, &pindexLast)) { int nDoS; if (state.IsInvalid(nDoS)) { if (nDoS > 0) Misbehaving(pfrom->GetId(), nDoS); return error("invalid header received"); } } } if (pindexLast) UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash()); if (nCount == MAX_HEADERS_RESULTS && pindexLast) { // Headers message had its maximum size; the peer may have more headers. // TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue // from there instead. LogPrint("net", "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->id, pfrom->nStartingHeight); pfrom->PushMessage("getheaders", chainActive.GetLocator(pindexLast), uint256(0)); } } else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing { CBlock block; vRecv >> block; CInv inv(MSG_BLOCK, block.GetHash()); LogPrint("net", "received block %s peer=%d\n", inv.hash.ToString(), pfrom->id); pfrom->AddInventoryKnown(inv); CValidationState state; ProcessNewBlock(state, pfrom, &block); int nDoS; if (state.IsInvalid(nDoS)) { pfrom->PushMessage("reject", strCommand, state.GetRejectCode(), state.GetRejectReason(), inv.hash); if (nDoS > 0) { LOCK(cs_main); Misbehaving(pfrom->GetId(), nDoS); } } } else if (strCommand == "getaddr") { pfrom->vAddrToSend.clear(); vector vAddr = addrman.GetAddr(); BOOST_FOREACH(const CAddress &addr, vAddr) pfrom->PushAddress(addr); } else if (strCommand == "mempool") { LOCK2(cs_main, pfrom->cs_filter); std::vector vtxid; mempool.queryHashes(vtxid); vector vInv; BOOST_FOREACH(uint256& hash, vtxid) { CInv inv(MSG_TX, hash); CTransaction tx; bool fInMemPool = mempool.lookup(hash, tx); if (!fInMemPool) continue; // another thread removed since queryHashes, maybe... if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(tx)) || (!pfrom->pfilter)) vInv.push_back(inv); if (vInv.size() == MAX_INV_SZ) { pfrom->PushMessage("inv", vInv); vInv.clear(); } } if (vInv.size() > 0) pfrom->PushMessage("inv", vInv); } else if (strCommand == "ping") { if (pfrom->nVersion > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful features: // // 1) A remote node can quickly check if the connection is operational // 2) Remote nodes can measure the latency of the network thread. If this node // is overloaded it won't respond to pings quickly and the remote node can // avoid sending us more work, like chain download requests. // // The nonce stops the remote getting confused between different pings: without // it, if the remote node sends a ping once per second and this node takes 5 // seconds to respond to each, the 5th ping the remote sends would appear to // return very quickly. pfrom->PushMessage("pong", nonce); } } else if (strCommand == "pong") { int64_t pingUsecEnd = nTimeReceived; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old ping without nonce should never pong) if (pfrom->nPingNonceSent != 0) { if (nonce == pfrom->nPingNonceSent) { // Matching pong received, this ping is no longer outstanding bPingFinished = true; int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart; if (pingUsecTime > 0) { // Successful ping time measurement, replace previous pfrom->nPingUsecTime = pingUsecTime; } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation somewhere, cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere, cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint("net", "pong peer=%d %s: %s, %x expected, %x received, %u bytes\n", pfrom->id, pfrom->cleanSubVer, sProblem, pfrom->nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom->nPingNonceSent = 0; } } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; uint256 alertHash = alert.GetHash(); if (pfrom->setKnown.count(alertHash) == 0) { if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alertHash); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Small DoS penalty so peers that send us lots of // duplicate/expired/invalid-signature/whatever alerts // eventually get banned. // This isn't a Misbehaving(100) (immediate ban) because the // peer might be an older or different implementation with // a different signature key, etc. Misbehaving(pfrom->GetId(), 10); } } } else if (strCommand == "filterload") { CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) // There is no excuse for sending a too-large filter Misbehaving(pfrom->GetId(), 100); else { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(filter); pfrom->pfilter->UpdateEmptyFull(); } pfrom->fRelayTxes = true; } else if (strCommand == "filteradd") { vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object, // and thus, the maximum size any matched object can have) in a filteradd message if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { Misbehaving(pfrom->GetId(), 100); } else { LOCK(pfrom->cs_filter); if (pfrom->pfilter) pfrom->pfilter->insert(vData); else Misbehaving(pfrom->GetId(), 100); } } else if (strCommand == "filterclear") { LOCK(pfrom->cs_filter); delete pfrom->pfilter; pfrom->pfilter = new CBloomFilter(); pfrom->fRelayTxes = true; } else if (strCommand == "reject") { if (fDebug) { try { string strMsg; unsigned char ccode; string strReason; vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, 111); ostringstream ss; ss << strMsg << " code " << itostr(ccode) << ": " << strReason; if (strMsg == "block" || strMsg == "tx") { uint256 hash; vRecv >> hash; ss << ": hash " << hash.ToString(); } LogPrint("net", "Reject %s\n", SanitizeString(ss.str())); } catch (std::ios_base::failure& e) { // Avoid feedback loops by preventing reject messages from triggering a new reject message. LogPrint("net", "Unparseable reject message received\n"); } } } else { // Ignore unknown commands for extensibility LogPrint("net", "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->id); } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } // requires LOCK(cs_vRecvMsg) bool ProcessMessages(CNode* pfrom) { //if (fDebug) // LogPrintf("ProcessMessages(%u messages)\n", pfrom->vRecvMsg.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fOk = true; if (!pfrom->vRecvGetData.empty()) ProcessGetData(pfrom); // this maintains the order of responses if (!pfrom->vRecvGetData.empty()) return fOk; std::deque::iterator it = pfrom->vRecvMsg.begin(); while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) { // Don't bother if send buffer is too full to respond anyway if (pfrom->nSendSize >= SendBufferSize()) break; // get next message CNetMessage& msg = *it; //if (fDebug) // LogPrintf("ProcessMessages(message %u msgsz, %u bytes, complete:%s)\n", // msg.hdr.nMessageSize, msg.vRecv.size(), // msg.complete() ? "Y" : "N"); // end, if an incomplete message is found if (!msg.complete()) break; // at this point, any failure means we can delete the current message it++; // Scan for message start if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) { LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", msg.hdr.GetCommand(), pfrom->id); fOk = false; break; } // Read header CMessageHeader& hdr = msg.hdr; if (!hdr.IsValid()) { LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", hdr.GetCommand(), pfrom->id); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; // Checksum CDataStream& vRecv = msg.vRecv; uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { LogPrintf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", strCommand, nMessageSize, nChecksum, hdr.nChecksum); continue; } // Process message bool fRet = false; try { fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime); boost::this_thread::interruption_point(); } catch (std::ios_base::failure& e) { pfrom->PushMessage("reject", strCommand, REJECT_MALFORMED, string("error parsing message")); if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand, nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand, nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (boost::thread_interrupted) { throw; } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessages()"); } if (!fRet) LogPrintf("ProcessMessage(%s, %u bytes) FAILED peer=%d\n", strCommand, nMessageSize, pfrom->id); break; } // In case the connection got shut down, its receive buffer was wiped if (!pfrom->fDisconnect) pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it); return fOk; } bool SendMessages(CNode* pto, bool fSendTrickle) { { // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((unsigned char*)&nonce, sizeof(nonce)); } pto->fPingQueued = false; pto->nPingUsecStart = GetTimeMicros(); if (pto->nVersion > BIP0031_VERSION) { pto->nPingNonceSent = nonce; pto->PushMessage("ping", nonce); } else { // Peer is too old to support ping command with nonce, pong will never arrive. pto->nPingNonceSent = 0; pto->PushMessage("ping"); } } TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState() if (!lockMain) return true; // Address refresh broadcast static int64_t nLastRebroadcast; if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60)) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { // Periodically clear setAddrKnown to allow refresh broadcasts if (nLastRebroadcast) pnode->setAddrKnown.clear(); // Rebroadcast our address AdvertizeLocal(pnode); } if (!vNodes.empty()) nLastRebroadcast = GetTime(); } // // Message: addr // if (fSendTrickle) { vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { // returns true if wasn't already contained in the set if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } CNodeState &state = *State(pto->GetId()); if (state.fShouldBan) { if (pto->fWhitelisted) LogPrintf("Warning: not punishing whitelisted peer %s!\n", pto->addr.ToString()); else { pto->fDisconnect = true; if (pto->addr.IsLocal()) LogPrintf("Warning: not banning local peer %s!\n", pto->addr.ToString()); else { CNode::Ban(pto->addr); } } state.fShouldBan = false; } BOOST_FOREACH(const CBlockReject& reject, state.rejects) pto->PushMessage("reject", (string)"block", reject.chRejectCode, reject.strRejectReason, reject.hashBlock); state.rejects.clear(); // Start block sync if (pindexBestHeader == NULL) pindexBestHeader = chainActive.Tip(); bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); // Download if this is a nice peer, or we have no nice peers and this one might do. if (!state.fSyncStarted && !pto->fClient && fFetch && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're close to today. if (nSyncStarted == 0 || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; nSyncStarted++; CBlockIndex *pindexStart = pindexBestHeader->pprev ? pindexBestHeader->pprev : pindexBestHeader; LogPrint("net", "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->id, pto->nStartingHeight); pto->PushMessage("getheaders", chainActive.GetLocator(pindexStart), uint256(0)); } } // Resend wallet transactions that haven't gotten in a block yet // Except during reindex, importing and IBD, when old wallet // transactions become unconfirmed and spams other nodes. if (!fReindex && !fImporting && !IsInitialBlockDownload()) { g_signals.Broadcast(); } // // Message: inventory // vector vInv; vector vInvWait; { LOCK(pto->cs_inventory); vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // Detect whether we're stalling int64_t nNow = GetTimeMicros(); if (!pto->fDisconnect && state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot move. During normal steady state, // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection // should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->id); pto->fDisconnect = true; } // // Message: getdata (blocks) // vector vGetData; if (!pto->fDisconnect && !pto->fClient && fFetch && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller); BOOST_FOREACH(CBlockIndex *pindex, vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(pto->GetId(), pindex->GetBlockHash(), pindex); LogPrint("net", "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->id); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->nStallingSince == 0) { State(staller)->nStallingSince = nNow; LogPrint("net", "Stall started peer=%d\n", staller); } } } // // Message: getdata (non-blocks) // while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(inv)) { if (fDebug) LogPrint("net", "Requesting %s peer=%d\n", inv.ToString(), pto->id); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } bool CBlockUndo::WriteToDisk(CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to append CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("CBlockUndo::WriteToDisk : OpenUndoFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(*this); fileout << FLATDATA(Params().MessageStart()) << nSize; // Write undo data long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) return error("CBlockUndo::WriteToDisk : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << *this; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; fileout << hasher.GetHash(); // Flush stdio buffers and commit to disk before returning fflush(fileout.Get()); if (!IsInitialBlockDownload()) FileCommit(fileout.Get()); return true; } bool CBlockUndo::ReadFromDisk(const CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to read CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("CBlockUndo::ReadFromDisk : OpenBlockFile failed"); // Read block uint256 hashChecksum; try { filein >> *this; filein >> hashChecksum; } catch (std::exception &e) { return error("%s : Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; if (hashChecksum != hasher.GetHash()) return error("CBlockUndo::ReadFromDisk : Checksum mismatch"); return true; } std::string CBlockFileInfo::ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast)); } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers BlockMap::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } } instance_of_cmaincleanup;