// Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include #include #include #include // anonymous namespace with local implementation code (OpenSSL interaction) namespace { // Generate a private key from just the secret parameter int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) { int ok = 0; BN_CTX *ctx = NULL; EC_POINT *pub_key = NULL; if (!eckey) return 0; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) goto err; pub_key = EC_POINT_new(group); if (pub_key == NULL) goto err; if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) goto err; EC_KEY_set_private_key(eckey,priv_key); EC_KEY_set_public_key(eckey,pub_key); ok = 1; err: if (pub_key) EC_POINT_free(pub_key); if (ctx != NULL) BN_CTX_free(ctx); return(ok); } // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields // recid selects which key is recovered // if check is non-zero, additional checks are performed int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check) { if (!eckey) return 0; int ret = 0; BN_CTX *ctx = NULL; BIGNUM *x = NULL; BIGNUM *e = NULL; BIGNUM *order = NULL; BIGNUM *sor = NULL; BIGNUM *eor = NULL; BIGNUM *field = NULL; EC_POINT *R = NULL; EC_POINT *O = NULL; EC_POINT *Q = NULL; BIGNUM *rr = NULL; BIGNUM *zero = NULL; int n = 0; int i = recid / 2; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; } BN_CTX_start(ctx); order = BN_CTX_get(ctx); if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; } x = BN_CTX_get(ctx); if (!BN_copy(x, order)) { ret=-1; goto err; } if (!BN_mul_word(x, i)) { ret=-1; goto err; } if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; } field = BN_CTX_get(ctx); if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; } if (BN_cmp(x, field) >= 0) { ret=0; goto err; } if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; } if (check) { if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; } if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; } } if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } n = EC_GROUP_get_degree(group); e = BN_CTX_get(ctx); if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; } if (8*msglen > n) BN_rshift(e, e, 8-(n & 7)); zero = BN_CTX_get(ctx); if (!BN_zero(zero)) { ret=-1; goto err; } if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; } rr = BN_CTX_get(ctx); if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; } sor = BN_CTX_get(ctx); if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; } eor = BN_CTX_get(ctx); if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; } if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; } if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; } ret = 1; err: if (ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (R != NULL) EC_POINT_free(R); if (O != NULL) EC_POINT_free(O); if (Q != NULL) EC_POINT_free(Q); return ret; } // RAII Wrapper around OpenSSL's EC_KEY class CECKey { private: EC_KEY *pkey; public: CECKey() { pkey = EC_KEY_new_by_curve_name(NID_secp256k1); assert(pkey != NULL); } ~CECKey() { EC_KEY_free(pkey); } void GetSecretBytes(unsigned char vch[32]) const { const BIGNUM *bn = EC_KEY_get0_private_key(pkey); assert(bn); int nBytes = BN_num_bytes(bn); int n=BN_bn2bin(bn,&vch[32 - nBytes]); assert(n == nBytes); memset(vch, 0, 32 - nBytes); } void SetSecretBytes(const unsigned char vch[32]) { bool ret; BIGNUM bn; BN_init(&bn); ret = BN_bin2bn(vch, 32, &bn); assert(ret); ret = EC_KEY_regenerate_key(pkey, &bn); assert(ret); BN_clear_free(&bn); } void GetPrivKey(CPrivKey &privkey, bool fCompressed) { EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); int nSize = i2d_ECPrivateKey(pkey, NULL); assert(nSize); privkey.resize(nSize); unsigned char* pbegin = &privkey[0]; int nSize2 = i2d_ECPrivateKey(pkey, &pbegin); assert(nSize == nSize2); } bool SetPrivKey(const CPrivKey &privkey, bool fSkipCheck=false) { const unsigned char* pbegin = &privkey[0]; if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) { if(fSkipCheck) return true; // d2i_ECPrivateKey returns true if parsing succeeds. // This doesn't necessarily mean the key is valid. if (EC_KEY_check_key(pkey)) return true; } return false; } void GetPubKey(CPubKey &pubkey, bool fCompressed) { EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); int nSize = i2o_ECPublicKey(pkey, NULL); assert(nSize); assert(nSize <= 65); unsigned char c[65]; unsigned char *pbegin = c; int nSize2 = i2o_ECPublicKey(pkey, &pbegin); assert(nSize == nSize2); pubkey.Set(&c[0], &c[nSize]); } bool SetPubKey(const CPubKey &pubkey) { const unsigned char* pbegin = pubkey.begin(); return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size()); } bool Sign(const uint256 &hash, std::vector& vchSig) { vchSig.clear(); ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); if (sig == NULL) return false; BN_CTX *ctx = BN_CTX_new(); BN_CTX_start(ctx); const EC_GROUP *group = EC_KEY_get0_group(pkey); BIGNUM *order = BN_CTX_get(ctx); BIGNUM *halforder = BN_CTX_get(ctx); EC_GROUP_get_order(group, order, ctx); BN_rshift1(halforder, order); if (BN_cmp(sig->s, halforder) > 0) { // enforce low S values, by negating the value (modulo the order) if above order/2. BN_sub(sig->s, order, sig->s); } BN_CTX_end(ctx); BN_CTX_free(ctx); unsigned int nSize = ECDSA_size(pkey); vchSig.resize(nSize); // Make sure it is big enough unsigned char *pos = &vchSig[0]; nSize = i2d_ECDSA_SIG(sig, &pos); ECDSA_SIG_free(sig); vchSig.resize(nSize); // Shrink to fit actual size return true; } bool Verify(const uint256 &hash, const std::vector& vchSig) { if (vchSig.empty()) return false; // New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first. unsigned char *norm_der = NULL; ECDSA_SIG *norm_sig = ECDSA_SIG_new(); const unsigned char* sigptr = &vchSig[0]; assert(norm_sig); if (d2i_ECDSA_SIG(&norm_sig, &sigptr, vchSig.size()) == NULL) { /* As of OpenSSL 1.0.0p d2i_ECDSA_SIG frees and nulls the pointer on * error. But OpenSSL's own use of this function redundantly frees the * result. As ECDSA_SIG_free(NULL) is a no-op, and in the absence of a * clear contract for the function behaving the same way is more * conservative. */ ECDSA_SIG_free(norm_sig); return false; } int derlen = i2d_ECDSA_SIG(norm_sig, &norm_der); ECDSA_SIG_free(norm_sig); if (derlen <= 0) return false; // -1 = error, 0 = bad sig, 1 = good bool ret = ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), norm_der, derlen, pkey) == 1; OPENSSL_free(norm_der); return ret; } bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) { bool fOk = false; ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); if (sig==NULL) return false; memset(p64, 0, 64); int nBitsR = BN_num_bits(sig->r); int nBitsS = BN_num_bits(sig->s); if (nBitsR <= 256 && nBitsS <= 256) { CPubKey pubkey; GetPubKey(pubkey, true); for (int i=0; i<4; i++) { CECKey keyRec; if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) { CPubKey pubkeyRec; keyRec.GetPubKey(pubkeyRec, true); if (pubkeyRec == pubkey) { rec = i; fOk = true; break; } } } assert(fOk); BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]); BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]); } ECDSA_SIG_free(sig); return fOk; } // reconstruct public key from a compact signature // This is only slightly more CPU intensive than just verifying it. // If this function succeeds, the recovered public key is guaranteed to be valid // (the signature is a valid signature of the given data for that key) bool Recover(const uint256 &hash, const unsigned char *p64, int rec) { if (rec<0 || rec>=3) return false; ECDSA_SIG *sig = ECDSA_SIG_new(); BN_bin2bn(&p64[0], 32, sig->r); BN_bin2bn(&p64[32], 32, sig->s); bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1; ECDSA_SIG_free(sig); return ret; } static bool TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32]) { bool ret = true; BN_CTX *ctx = BN_CTX_new(); BN_CTX_start(ctx); BIGNUM *bnSecret = BN_CTX_get(ctx); BIGNUM *bnTweak = BN_CTX_get(ctx); BIGNUM *bnOrder = BN_CTX_get(ctx); EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1); EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order... BN_bin2bn(vchTweak, 32, bnTweak); if (BN_cmp(bnTweak, bnOrder) >= 0) ret = false; // extremely unlikely BN_bin2bn(vchSecretIn, 32, bnSecret); BN_add(bnSecret, bnSecret, bnTweak); BN_nnmod(bnSecret, bnSecret, bnOrder, ctx); if (BN_is_zero(bnSecret)) ret = false; // ridiculously unlikely int nBits = BN_num_bits(bnSecret); memset(vchSecretOut, 0, 32); BN_bn2bin(bnSecret, &vchSecretOut[32-(nBits+7)/8]); EC_GROUP_free(group); BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } bool TweakPublic(const unsigned char vchTweak[32]) { bool ret = true; BN_CTX *ctx = BN_CTX_new(); BN_CTX_start(ctx); BIGNUM *bnTweak = BN_CTX_get(ctx); BIGNUM *bnOrder = BN_CTX_get(ctx); BIGNUM *bnOne = BN_CTX_get(ctx); const EC_GROUP *group = EC_KEY_get0_group(pkey); EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order... BN_bin2bn(vchTweak, 32, bnTweak); if (BN_cmp(bnTweak, bnOrder) >= 0) ret = false; // extremely unlikely EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group); BN_one(bnOne); EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx); if (EC_POINT_is_at_infinity(group, point)) ret = false; // ridiculously unlikely EC_KEY_set_public_key(pkey, point); EC_POINT_free(point); BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } }; }; // end of anonymous namespace bool CKey::Check(const unsigned char *vch) { // Do not convert to OpenSSL's data structures for range-checking keys, // it's easy enough to do directly. static const unsigned char vchMax[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 }; bool fIsZero = true; for (int i=0; i<32 && fIsZero; i++) if (vch[i] != 0) fIsZero = false; if (fIsZero) return false; for (int i=0; i<32; i++) { if (vch[i] < vchMax[i]) return true; if (vch[i] > vchMax[i]) return false; } return true; } void CKey::MakeNewKey(bool fCompressedIn) { do { RAND_bytes(vch, sizeof(vch)); } while (!Check(vch)); fValid = true; fCompressed = fCompressedIn; } bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { CECKey key; if (!key.SetPrivKey(privkey)) return false; key.GetSecretBytes(vch); fCompressed = fCompressedIn; fValid = true; return true; } CPrivKey CKey::GetPrivKey() const { assert(fValid); CECKey key; key.SetSecretBytes(vch); CPrivKey privkey; key.GetPrivKey(privkey, fCompressed); return privkey; } CPubKey CKey::GetPubKey() const { assert(fValid); CECKey key; key.SetSecretBytes(vch); CPubKey pubkey; key.GetPubKey(pubkey, fCompressed); return pubkey; } bool CKey::Sign(const uint256 &hash, std::vector& vchSig) const { if (!fValid) return false; CECKey key; key.SetSecretBytes(vch); return key.Sign(hash, vchSig); } bool CKey::SignCompact(const uint256 &hash, std::vector& vchSig) const { if (!fValid) return false; CECKey key; key.SetSecretBytes(vch); vchSig.resize(65); int rec = -1; if (!key.SignCompact(hash, &vchSig[1], rec)) return false; assert(rec != -1); vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); return true; } bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { CECKey key; if (!key.SetPrivKey(privkey, fSkipCheck)) return false; key.GetSecretBytes(vch); fCompressed = vchPubKey.IsCompressed(); fValid = true; if (fSkipCheck) return true; if (GetPubKey() != vchPubKey) return false; return true; } bool CPubKey::Verify(const uint256 &hash, const std::vector& vchSig) const { if (!IsValid()) return false; CECKey key; if (!key.SetPubKey(*this)) return false; if (!key.Verify(hash, vchSig)) return false; return true; } bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector& vchSig) { if (vchSig.size() != 65) return false; CECKey key; if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) return false; key.GetPubKey(*this, (vchSig[0] - 27) & 4); return true; } bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector& vchSig) const { if (!IsValid()) return false; if (vchSig.size() != 65) return false; CECKey key; if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) return false; CPubKey pubkeyRec; key.GetPubKey(pubkeyRec, IsCompressed()); if (*this != pubkeyRec) return false; return true; } bool CPubKey::IsFullyValid() const { if (!IsValid()) return false; CECKey key; if (!key.SetPubKey(*this)) return false; return true; } bool CPubKey::Decompress() { if (!IsValid()) return false; CECKey key; if (!key.SetPubKey(*this)) return false; key.GetPubKey(*this, false); return true; } void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) { unsigned char num[4]; num[0] = (nChild >> 24) & 0xFF; num[1] = (nChild >> 16) & 0xFF; num[2] = (nChild >> 8) & 0xFF; num[3] = (nChild >> 0) & 0xFF; HMAC_SHA512_CTX ctx; HMAC_SHA512_Init(&ctx, chainCode, 32); HMAC_SHA512_Update(&ctx, &header, 1); HMAC_SHA512_Update(&ctx, data, 32); HMAC_SHA512_Update(&ctx, num, 4); HMAC_SHA512_Final(output, &ctx); } bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { assert(IsValid()); assert(IsCompressed()); unsigned char out[64]; LockObject(out); if ((nChild >> 31) == 0) { CPubKey pubkey = GetPubKey(); assert(pubkey.begin() + 33 == pubkey.end()); BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); } else { assert(begin() + 32 == end()); BIP32Hash(cc, nChild, 0, begin(), out); } memcpy(ccChild, out+32, 32); bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out); UnlockObject(out); keyChild.fCompressed = true; keyChild.fValid = ret; return ret; } bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { assert(IsValid()); assert((nChild >> 31) == 0); assert(begin() + 33 == end()); unsigned char out[64]; BIP32Hash(cc, nChild, *begin(), begin()+1, out); memcpy(ccChild, out+32, 32); CECKey key; bool ret = key.SetPubKey(*this); ret &= key.TweakPublic(out); key.GetPubKey(pubkeyChild, true); return ret; } bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { out.nDepth = nDepth + 1; CKeyID id = key.GetPubKey().GetID(); memcpy(&out.vchFingerprint[0], &id, 4); out.nChild = nChild; return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode); } void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { static const char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; HMAC_SHA512_CTX ctx; HMAC_SHA512_Init(&ctx, hashkey, sizeof(hashkey)); HMAC_SHA512_Update(&ctx, seed, nSeedLen); unsigned char out[64]; LockObject(out); HMAC_SHA512_Final(out, &ctx); key.Set(&out[0], &out[32], true); memcpy(vchChainCode, &out[32], 32); UnlockObject(out); nDepth = 0; nChild = 0; memset(vchFingerprint, 0, sizeof(vchFingerprint)); } CExtPubKey CExtKey::Neuter() const { CExtPubKey ret; ret.nDepth = nDepth; memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); ret.nChild = nChild; ret.pubkey = key.GetPubKey(); memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32); return ret; } void CExtKey::Encode(unsigned char code[74]) const { code[0] = nDepth; memcpy(code+1, vchFingerprint, 4); code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; memcpy(code+9, vchChainCode, 32); code[41] = 0; assert(key.size() == 32); memcpy(code+42, key.begin(), 32); } void CExtKey::Decode(const unsigned char code[74]) { nDepth = code[0]; memcpy(vchFingerprint, code+1, 4); nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; memcpy(vchChainCode, code+9, 32); key.Set(code+42, code+74, true); } void CExtPubKey::Encode(unsigned char code[74]) const { code[0] = nDepth; memcpy(code+1, vchFingerprint, 4); code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; memcpy(code+9, vchChainCode, 32); assert(pubkey.size() == 33); memcpy(code+41, pubkey.begin(), 33); } void CExtPubKey::Decode(const unsigned char code[74]) { nDepth = code[0]; memcpy(vchFingerprint, code+1, 4); nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; memcpy(vchChainCode, code+9, 32); pubkey.Set(code+41, code+74); } bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const { out.nDepth = nDepth + 1; CKeyID id = pubkey.GetID(); memcpy(&out.vchFingerprint[0], &id, 4); out.nChild = nChild; return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode); } bool ECC_InitSanityCheck() { EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if(pkey == NULL) return false; EC_KEY_free(pkey); // TODO Is there more EC functionality that could be missing? return true; }