// Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include "crypto/sha2.h" #include "random.h" #ifdef USE_SECP256K1 #include #else #include "ecwrapper.h" #endif //! anonymous namespace with local implementation code (OpenSSL interaction) namespace { #ifdef USE_SECP256K1 #include class CSecp256k1Init { public: CSecp256k1Init() { secp256k1_start(); } ~CSecp256k1Init() { secp256k1_stop(); } }; static CSecp256k1Init instance_of_csecp256k1; #endif int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) { while (c1len > c2len) { if (*c1) return 1; c1++; c1len--; } while (c2len > c1len) { if (*c2) return -1; c2++; c2len--; } while (c1len > 0) { if (*c1 > *c2) return 1; if (*c2 > *c1) return -1; c1++; c2++; c1len--; } return 0; } /** Order of secp256k1's generator minus 1. */ const unsigned char vchMaxModOrder[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 }; /** Half of the order of secp256k1's generator minus 1. */ const unsigned char vchMaxModHalfOrder[32] = { 0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D, 0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0 }; const unsigned char vchZero[1] = {0}; } // anon namespace bool CKey::Check(const unsigned char *vch) { return CompareBigEndian(vch, 32, vchZero, 0) > 0 && CompareBigEndian(vch, 32, vchMaxModOrder, 32) <= 0; } bool CKey::CheckSignatureElement(const unsigned char *vch, int len, bool half) { return CompareBigEndian(vch, len, vchZero, 0) > 0 && CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0; } void CKey::MakeNewKey(bool fCompressedIn) { do { GetRandBytes(vch, sizeof(vch)); } while (!Check(vch)); fValid = true; fCompressed = fCompressedIn; } bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { #ifdef USE_SECP256K1 if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size())) return false; #else CECKey key; if (!key.SetPrivKey(&privkey[0], privkey.size())) return false; key.GetSecretBytes(vch); #endif fCompressed = fCompressedIn; fValid = true; return true; } CPrivKey CKey::GetPrivKey() const { assert(fValid); CPrivKey privkey; int privkeylen, ret; #ifdef USE_SECP256K1 privkey.resize(279); privkeylen = 279; ret = secp256k1_ecdsa_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed); assert(ret); privkey.resize(privkeylen); #else CECKey key; key.SetSecretBytes(vch); privkeylen = key.GetPrivKeySize(fCompressed); assert(privkeylen); privkey.resize(privkeylen); ret = key.GetPrivKey(&privkey[0], fCompressed); assert(ret == (int)privkey.size()); #endif return privkey; } CPubKey CKey::GetPubKey() const { assert(fValid); CPubKey result; #ifdef USE_SECP256K1 int clen = 65; int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed); assert((int)result.size() == clen); assert(ret); #else std::vector pubkey; CECKey key; key.SetSecretBytes(vch); key.GetPubKey(pubkey, fCompressed); result.Set(pubkey.begin(), pubkey.end()); #endif assert(result.IsValid()); return result; } bool CKey::Sign(const uint256 &hash, std::vector& vchSig, bool lowS) const { if (!fValid) return false; #ifdef USE_SECP256K1 vchSig.resize(72); int nSigLen = 72; CKey nonce; do { nonce.MakeNewKey(true); if (secp256k1_ecdsa_sign((const unsigned char*)&hash, 32, (unsigned char*)&vchSig[0], &nSigLen, begin(), nonce.begin())) break; } while(true); vchSig.resize(nSigLen); return true; #else CECKey key; key.SetSecretBytes(vch); return key.Sign(hash, vchSig, lowS); #endif } bool CKey::SignCompact(const uint256 &hash, std::vector& vchSig) const { if (!fValid) return false; vchSig.resize(65); int rec = -1; #ifdef USE_SECP256K1 CKey nonce; do { nonce.MakeNewKey(true); if (secp256k1_ecdsa_sign_compact((const unsigned char*)&hash, 32, &vchSig[1], begin(), nonce.begin(), &rec)) break; } while(true); #else CECKey key; key.SetSecretBytes(vch); if (!key.SignCompact(hash, &vchSig[1], rec)) return false; #endif assert(rec != -1); vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); return true; } bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { #ifdef USE_SECP256K1 if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size())) return false; #else CECKey key; if (!key.SetPrivKey(&privkey[0], privkey.size(), fSkipCheck)) return false; key.GetSecretBytes(vch); #endif fCompressed = vchPubKey.IsCompressed(); fValid = true; if (fSkipCheck) return true; if (GetPubKey() != vchPubKey) return false; return true; } bool CPubKey::Verify(const uint256 &hash, const std::vector& vchSig) const { if (!IsValid()) return false; #ifdef USE_SECP256K1 if (secp256k1_ecdsa_verify((const unsigned char*)&hash, 32, &vchSig[0], vchSig.size(), begin(), size()) != 1) return false; #else CECKey key; if (!key.SetPubKey(begin(), size())) return false; if (!key.Verify(hash, vchSig)) return false; #endif return true; } bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector& vchSig) { if (vchSig.size() != 65) return false; int recid = (vchSig[0] - 27) & 3; bool fComp = ((vchSig[0] - 27) & 4) != 0; #ifdef USE_SECP256K1 int pubkeylen = 65; if (!secp256k1_ecdsa_recover_compact((const unsigned char*)&hash, 32, &vchSig[1], (unsigned char*)begin(), &pubkeylen, fComp, recid)) return false; assert((int)size() == pubkeylen); #else CECKey key; if (!key.Recover(hash, &vchSig[1], recid)) return false; std::vector pubkey; key.GetPubKey(pubkey, fComp); Set(pubkey.begin(), pubkey.end()); #endif return true; } bool CPubKey::IsFullyValid() const { if (!IsValid()) return false; #ifdef USE_SECP256K1 if (!secp256k1_ecdsa_pubkey_verify(begin(), size())) return false; #else CECKey key; if (!key.SetPubKey(begin(), size())) return false; #endif return true; } bool CPubKey::Decompress() { if (!IsValid()) return false; #ifdef USE_SECP256K1 int clen = size(); int ret = secp256k1_ecdsa_pubkey_decompress((unsigned char*)begin(), &clen); assert(ret); assert(clen == (int)size()); #else CECKey key; if (!key.SetPubKey(begin(), size())) return false; std::vector pubkey; key.GetPubKey(pubkey, false); Set(pubkey.begin(), pubkey.end()); #endif return true; } void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) { unsigned char num[4]; num[0] = (nChild >> 24) & 0xFF; num[1] = (nChild >> 16) & 0xFF; num[2] = (nChild >> 8) & 0xFF; num[3] = (nChild >> 0) & 0xFF; CHMAC_SHA512(chainCode, 32).Write(&header, 1) .Write(data, 32) .Write(num, 4) .Finalize(output); } bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { assert(IsValid()); assert(IsCompressed()); unsigned char out[64]; LockObject(out); if ((nChild >> 31) == 0) { CPubKey pubkey = GetPubKey(); assert(pubkey.begin() + 33 == pubkey.end()); BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); } else { assert(begin() + 32 == end()); BIP32Hash(cc, nChild, 0, begin(), out); } memcpy(ccChild, out+32, 32); #ifdef USE_SECP256K1 memcpy((unsigned char*)keyChild.begin(), begin(), 32); bool ret = secp256k1_ecdsa_privkey_tweak_add((unsigned char*)keyChild.begin(), out); #else bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out); #endif UnlockObject(out); keyChild.fCompressed = true; keyChild.fValid = ret; return ret; } bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { assert(IsValid()); assert((nChild >> 31) == 0); assert(begin() + 33 == end()); unsigned char out[64]; BIP32Hash(cc, nChild, *begin(), begin()+1, out); memcpy(ccChild, out+32, 32); #ifdef USE_SECP256K1 pubkeyChild = *this; bool ret = secp256k1_ecdsa_pubkey_tweak_add((unsigned char*)pubkeyChild.begin(), pubkeyChild.size(), out); #else CECKey key; bool ret = key.SetPubKey(begin(), size()); ret &= key.TweakPublic(out); std::vector pubkey; key.GetPubKey(pubkey, true); pubkeyChild.Set(pubkey.begin(), pubkey.end()); #endif return ret; } bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { out.nDepth = nDepth + 1; CKeyID id = key.GetPubKey().GetID(); memcpy(&out.vchFingerprint[0], &id, 4); out.nChild = nChild; return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode); } void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; unsigned char out[64]; LockObject(out); CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out); key.Set(&out[0], &out[32], true); memcpy(vchChainCode, &out[32], 32); UnlockObject(out); nDepth = 0; nChild = 0; memset(vchFingerprint, 0, sizeof(vchFingerprint)); } CExtPubKey CExtKey::Neuter() const { CExtPubKey ret; ret.nDepth = nDepth; memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); ret.nChild = nChild; ret.pubkey = key.GetPubKey(); memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32); return ret; } void CExtKey::Encode(unsigned char code[74]) const { code[0] = nDepth; memcpy(code+1, vchFingerprint, 4); code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; memcpy(code+9, vchChainCode, 32); code[41] = 0; assert(key.size() == 32); memcpy(code+42, key.begin(), 32); } void CExtKey::Decode(const unsigned char code[74]) { nDepth = code[0]; memcpy(vchFingerprint, code+1, 4); nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; memcpy(vchChainCode, code+9, 32); key.Set(code+42, code+74, true); } void CExtPubKey::Encode(unsigned char code[74]) const { code[0] = nDepth; memcpy(code+1, vchFingerprint, 4); code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; memcpy(code+9, vchChainCode, 32); assert(pubkey.size() == 33); memcpy(code+41, pubkey.begin(), 33); } void CExtPubKey::Decode(const unsigned char code[74]) { nDepth = code[0]; memcpy(vchFingerprint, code+1, 4); nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; memcpy(vchChainCode, code+9, 32); pubkey.Set(code+41, code+74); } bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const { out.nDepth = nDepth + 1; CKeyID id = pubkey.GetID(); memcpy(&out.vchFingerprint[0], &id, 4); out.nChild = nChild; return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode); } bool ECC_InitSanityCheck() { #ifdef USE_SECP256K1 return true; #else return CECKey::SanityCheck(); #endif }