/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_GROUP_ #define _SECP256K1_GROUP_ #include "num.h" #include "field.h" /** A group element of the secp256k1 curve, in affine coordinates. */ typedef struct { secp256k1_fe_t x; secp256k1_fe_t y; int infinity; /* whether this represents the point at infinity */ } secp256k1_ge_t; /** A group element of the secp256k1 curve, in jacobian coordinates. */ typedef struct { secp256k1_fe_t x; /* actual X: x/z^2 */ secp256k1_fe_t y; /* actual Y: y/z^3 */ secp256k1_fe_t z; int infinity; /* whether this represents the point at infinity */ } secp256k1_gej_t; /** Global constants related to the group */ typedef struct { secp256k1_num_t order; /* the order of the curve (= order of its generator) */ secp256k1_num_t half_order; /* half the order of the curve (= order of its generator) */ secp256k1_ge_t g; /* the generator point */ #ifdef USE_ENDOMORPHISM /* constants related to secp256k1's efficiently computable endomorphism */ secp256k1_fe_t beta; secp256k1_num_t lambda, a1b2, b1, a2; #endif } secp256k1_ge_consts_t; static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL; /** Initialize the group module. */ static void secp256k1_ge_start(void); /** De-initialize the group module. */ static void secp256k1_ge_stop(void); /** Set a group element equal to the point at infinity */ static void secp256k1_ge_set_infinity(secp256k1_ge_t *r); /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); /** Check whether a group element is the point at infinity. */ static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a); /** Check whether a group element is valid (i.e., on the curve). */ static int secp256k1_ge_is_valid(const secp256k1_ge_t *a); static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); /** Get a hex representation of a point. *rlen will be overwritten with the real length. */ static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); /** Set a group element equal to another which is given in jacobian coordinates */ static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); /** Set a batch of group elements equal to the inputs given in jacobian coordinates */ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]); /** Set a group element (jacobian) equal to the point at infinity. */ static void secp256k1_gej_set_infinity(secp256k1_gej_t *r); /** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); /** Set a group element (jacobian) equal to another which is given in affine coordinates. */ static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); /** Get the X coordinate of a group element (jacobian). */ static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); /** Check whether a group element is the point at infinity. */ static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a); /** Set r equal to the double of a. */ static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a); /** Set r equal to the sum of a and b. */ static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time guarantee, and b is allowed to be infinity. */ static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); /** Get a hex representation of a point. *rlen will be overwritten with the real length. */ static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a); #ifdef USE_ENDOMORPHISM /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); /** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is not more than 256 bits). */ static void secp256k1_gej_split_exp_var(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a); #endif /** Clear a secp256k1_gej_t to prevent leaking sensitive information. */ static void secp256k1_gej_clear(secp256k1_gej_t *r); /** Clear a secp256k1_ge_t to prevent leaking sensitive information. */ static void secp256k1_ge_clear(secp256k1_ge_t *r); #endif