/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_FIELD_H #define SECP256K1_FIELD_H #include "util.h" /* This file defines the generic interface for working with secp256k1_fe * objects, which represent field elements (integers modulo 2^256 - 2^32 - 977). * * The actual definition of the secp256k1_fe type depends on the chosen field * implementation; see the field_5x52.h and field_10x26.h files for details. * * All secp256k1_fe objects have implicit properties that determine what * operations are permitted on it. These are purely a function of what * secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at * compile time, and do not depend on the chosen field implementation. Despite * that, what these properties actually entail for the field representation * values depends on the chosen field implementation. These properties are: * - magnitude: an integer in [0,32] * - normalized: 0 or 1; normalized=1 implies magnitude <= 1. * * In VERIFY mode, they are materialized explicitly as fields in the struct, * allowing run-time verification of these properties. In that case, the field * implementation also provides a secp256k1_fe_verify routine to verify that * these fields match the run-time value and perform internal consistency * checks. */ #ifdef VERIFY # define SECP256K1_FE_VERIFY_FIELDS \ int magnitude; \ int normalized; #else # define SECP256K1_FE_VERIFY_FIELDS #endif #if defined(SECP256K1_WIDEMUL_INT128) #include "field_5x52.h" #elif defined(SECP256K1_WIDEMUL_INT64) #include "field_10x26.h" #else #error "Please select wide multiplication implementation" #endif #ifdef VERIFY /* Magnitude and normalized value for constants. */ #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \ /* Magnitude is 0 for constant 0; 1 otherwise. */ \ , (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \ /* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \ , (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f))))) #else #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) #endif /** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p. * * It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0. * It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p. * * SECP256K1_FE_CONST_INNER is provided by the implementation. */ #define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) } static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST( 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul ); #ifndef VERIFY /* In non-VERIFY mode, we #define the fe operations to be identical to their * internal field implementation, to avoid the potential overhead of a * function call (even though presumably inlinable). */ # define secp256k1_fe_normalize secp256k1_fe_impl_normalize # define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak # define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var # define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero # define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var # define secp256k1_fe_set_int secp256k1_fe_impl_set_int # define secp256k1_fe_clear secp256k1_fe_impl_clear # define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero # define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd # define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var # define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod # define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit # define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32 # define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked # define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked # define secp256k1_fe_add secp256k1_fe_impl_add # define secp256k1_fe_mul secp256k1_fe_impl_mul # define secp256k1_fe_sqr secp256k1_fe_impl_sqr # define secp256k1_fe_cmov secp256k1_fe_impl_cmov # define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage # define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage # define secp256k1_fe_inv secp256k1_fe_impl_inv # define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var # define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds # define secp256k1_fe_half secp256k1_fe_impl_half # define secp256k1_fe_add_int secp256k1_fe_impl_add_int # define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var #endif /* !defined(VERIFY) */ /** Normalize a field element. * * On input, r must be a valid field element. * On output, r represents the same value but has normalized=1 and magnitude=1. */ static void secp256k1_fe_normalize(secp256k1_fe *r); /** Give a field element magnitude 1. * * On input, r must be a valid field element. * On output, r represents the same value but has magnitude=1. Normalized is unchanged. */ static void secp256k1_fe_normalize_weak(secp256k1_fe *r); /** Normalize a field element, without constant-time guarantee. * * Identical in behavior to secp256k1_fe_normalize, but not constant time in r. */ static void secp256k1_fe_normalize_var(secp256k1_fe *r); /** Determine whether r represents field element 0. * * On input, r must be a valid field element. * Returns whether r = 0 (mod p). */ static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r); /** Determine whether r represents field element 0, without constant-time guarantee. * * Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r. */ static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r); /** Set a field element to an integer in range [0,0x7FFF]. * * On input, r does not need to be initialized, a must be in [0,0x7FFF]. * On output, r represents value a, is normalized and has magnitude (a!=0). */ static void secp256k1_fe_set_int(secp256k1_fe *r, int a); /** Set a field element to 0. * * On input, a does not need to be initialized. * On output, a represents 0, is normalized and has magnitude 0. */ static void secp256k1_fe_clear(secp256k1_fe *a); /** Determine whether a represents field element 0. * * On input, a must be a valid normalized field element. * Returns whether a = 0 (mod p). * * This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires * normalized input (and is much faster). */ static int secp256k1_fe_is_zero(const secp256k1_fe *a); /** Determine whether a (mod p) is odd. * * On input, a must be a valid normalized field element. * Returns (int(a) mod p) & 1. */ static int secp256k1_fe_is_odd(const secp256k1_fe *a); /** Determine whether two field elements are equal. * * On input, a and b must be valid field elements with magnitudes not exceeding * 1 and 31, respectively. * Returns a = b (mod p). */ static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b); /** Compare the values represented by 2 field elements, without constant-time guarantee. * * On input, a and b must be valid normalized field elements. * Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers * in range 0..p-1). */ static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b); /** Set a field element equal to the element represented by a provided 32-byte big endian value * interpreted modulo p. * * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array. * On output, r = a (mod p). It will have magnitude 1, and not be normalized. */ static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a); /** Set a field element equal to a provided 32-byte big endian value, checking for overflow. * * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array. * On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned. * If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting). */ static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a); /** Convert a field element to 32-byte big endian byte array. * On input, a must be a valid normalized field element, and r a pointer to a 32-byte array. * On output, r = a (mod p). */ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a); /** Negate a field element. * * On input, r does not need to be initialized. a must be a valid field element with * magnitude not exceeding m. m must be an integer constant expression in [0,31]. * Performs {r = -a}. * On output, r will not be normalized, and will have magnitude m+1. */ #define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m)) /** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression. * * Should not be called directly outside of tests. */ static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m); /** Add a small integer to a field element. * * Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared. * a must be in range [0,0x7FFF]. */ static void secp256k1_fe_add_int(secp256k1_fe *r, int a); /** Multiply a field element with a small integer. * * On input, r must be a valid field element. a must be an integer constant expression in [0,32]. * The magnitude of r times a must not exceed 32. * Performs {r *= a}. * On output, r's magnitude is multiplied by a, and r will not be normalized. */ #define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a)) /** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression. * * Should not be called directly outside of tests. */ static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a); /** Increment a field element by another. * * On input, r and a must be valid field elements, not necessarily normalized. * The sum of their magnitudes must not exceed 32. * Performs {r += a}. * On output, r will not be normalized, and will have magnitude incremented by a's. */ static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a); /** Multiply two field elements. * * On input, a and b must be valid field elements; r does not need to be initialized. * r and a may point to the same object, but neither may point to the object pointed * to by b. The magnitudes of a and b must not exceed 8. * Performs {r = a * b} * On output, r will have magnitude 1, but won't be normalized. */ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b); /** Square a field element. * * On input, a must be a valid field element; r does not need to be initialized. The magnitude * of a must not exceed 8. * Performs {r = a**2} * On output, r will have magnitude 1, but won't be normalized. */ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); /** Compute a square root of a field element. * * On input, a must be a valid field element with magnitude<=8; r need not be initialized. * If sqrt(a) exists, performs {r = sqrt(a)} and returns 1. * Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0. * The resulting value represented by r will be a square itself. * Variables r and a must not point to the same object. * On output, r will have magnitude 1 but will not be normalized. */ static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a); /** Compute the modular inverse of a field element. * * On input, a must be a valid field element; r need not be initialized. * Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its * inverse). * On output, r will have magnitude (a.magnitude != 0) and be normalized. */ static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); /** Compute the modular inverse of a field element, without constant-time guarantee. * * Behaves identically to secp256k1_fe_inv, but is not constant-time in a. */ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); /** Convert a field element to secp256k1_fe_storage. * * On input, a must be a valid normalized field element. * Performs {r = a}. */ static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); /** Convert a field element back from secp256k1_fe_storage. * * On input, r need not be initialized. * Performs {r = a}. * On output, r will be normalized and will have magnitude 1. */ static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag); /** Conditionally move a field element in constant time. * * On input, both r and a must be valid field elements. Flag must be 0 or 1. * Performs {r = flag ? a : r}. * * On output, r's magnitude will be the maximum of both input magnitudes. * It will be normalized if and only if both inputs were normalized. */ static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); /** Halve the value of a field element modulo the field prime in constant-time. * * On input, r must be a valid field element. * On output, r will be normalized and have magnitude floor(m/2) + 1 where m is * the magnitude of r on input. */ static void secp256k1_fe_half(secp256k1_fe *r); /** Sets r to a field element with magnitude m, normalized if (and only if) m==0. * The value is chosen so that it is likely to trigger edge cases related to * internal overflows. */ static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m); /** Determine whether a is a square (modulo p). * * On input, a must be a valid field element. */ static int secp256k1_fe_is_square_var(const secp256k1_fe *a); /** Check invariants on a field element (no-op unless VERIFY is enabled). */ static void secp256k1_fe_verify(const secp256k1_fe *a); #define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a) /** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */ static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m); #define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m) #endif /* SECP256K1_FIELD_H */