/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_ECDSA_IMPL_H_ #define _SECP256K1_ECDSA_IMPL_H_ #include "scalar.h" #include "field.h" #include "group.h" #include "ecmult.h" #include "ecmult_gen.h" #include "ecdsa.h" /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1 * sage: for t in xrange(1023, -1, -1): * .. p = 2**256 - 2**32 - t * .. if p.is_prime(): * .. print '%x'%p * .. break * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f' * sage: a = 0 * sage: b = 7 * sage: F = FiniteField (p) * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order()) * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141' */ static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL ); /** Difference between field and order, values 'p' and 'n' values defined in * "Standards for Efficient Cryptography" (SEC2) 2.7.1. * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F * sage: a = 0 * sage: b = 7 * sage: F = FiniteField (p) * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order()) * '14551231950b75fc4402da1722fc9baee' */ static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL ); static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) { unsigned char ra[32] = {0}, sa[32] = {0}; const unsigned char *rp; const unsigned char *sp; int lenr; int lens; int overflow; if (sig[0] != 0x30) return 0; lenr = sig[3]; if (5+lenr >= size) return 0; lens = sig[lenr+5]; if (sig[1] != lenr+lens+4) return 0; if (lenr+lens+6 > size) return 0; if (sig[2] != 0x02) return 0; if (lenr == 0) return 0; if (sig[lenr+4] != 0x02) return 0; if (lens == 0) return 0; sp = sig + 6 + lenr; while (lens > 0 && sp[0] == 0) { lens--; sp++; } if (lens > 32) return 0; rp = sig + 4; while (lenr > 0 && rp[0] == 0) { lenr--; rp++; } if (lenr > 32) return 0; memcpy(ra + 32 - lenr, rp, lenr); memcpy(sa + 32 - lens, sp, lens); overflow = 0; secp256k1_scalar_set_b32(&r->r, ra, &overflow); if (overflow) return 0; secp256k1_scalar_set_b32(&r->s, sa, &overflow); if (overflow) return 0; return 1; } static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) { unsigned char r[33] = {0}, s[33] = {0}; unsigned char *rp = r, *sp = s; int lenR = 33, lenS = 33; secp256k1_scalar_get_b32(&r[1], &a->r); secp256k1_scalar_get_b32(&s[1], &a->s); while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; } while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; } if (*size < 6+lenS+lenR) return 0; *size = 6 + lenS + lenR; sig[0] = 0x30; sig[1] = 4 + lenS + lenR; sig[2] = 0x02; sig[3] = lenR; memcpy(sig+4, rp, lenR); sig[4+lenR] = 0x02; sig[5+lenR] = lenS; memcpy(sig+lenR+6, sp, lenS); return 1; } static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) { unsigned char c[32]; secp256k1_scalar_t sn, u1, u2; secp256k1_fe_t xr; secp256k1_gej_t pubkeyj; secp256k1_gej_t pr; if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) return 0; secp256k1_scalar_inverse_var(&sn, &sig->s); secp256k1_scalar_mul(&u1, &sn, message); secp256k1_scalar_mul(&u2, &sn, &sig->r); secp256k1_gej_set_ge(&pubkeyj, pubkey); secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1); if (secp256k1_gej_is_infinity(&pr)) { return 0; } secp256k1_scalar_get_b32(c, &sig->r); secp256k1_fe_set_b32(&xr, c); /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n) * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p), * compute the remainder modulo n, and compare it to xr. However: * * xr == X(pr) mod n * <=> exists h. (xr + h * n < p && xr + h * n == X(pr)) * [Since 2 * n > p, h can only be 0 or 1] * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr)) * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p] * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p) * [Multiplying both sides of the equations by pr.z^2 mod p] * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x) * * Thus, we can avoid the inversion, but we have to check both cases separately. * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test. */ if (secp256k1_gej_eq_x_var(&xr, &pr)) { /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */ return 1; } if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) { /* xr + p >= n, so we can skip testing the second case. */ return 0; } secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe); if (secp256k1_gej_eq_x_var(&xr, &pr)) { /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */ return 1; } return 0; } static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) { unsigned char brx[32]; secp256k1_fe_t fx; secp256k1_ge_t x; secp256k1_gej_t xj; secp256k1_scalar_t rn, u1, u2; secp256k1_gej_t qj; if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) return 0; secp256k1_scalar_get_b32(brx, &sig->r); VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */ if (recid & 2) { if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) return 0; secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe); } if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) return 0; secp256k1_gej_set_ge(&xj, &x); secp256k1_scalar_inverse_var(&rn, &sig->r); secp256k1_scalar_mul(&u1, &rn, message); secp256k1_scalar_negate(&u1, &u1); secp256k1_scalar_mul(&u2, &rn, &sig->s); secp256k1_ecmult(&qj, &xj, &u2, &u1); secp256k1_ge_set_gej_var(pubkey, &qj); return !secp256k1_gej_is_infinity(&qj); } static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) { unsigned char b[32]; secp256k1_gej_t rp; secp256k1_ge_t r; secp256k1_scalar_t n; int overflow = 0; secp256k1_ecmult_gen(&rp, nonce); secp256k1_ge_set_gej(&r, &rp); secp256k1_fe_normalize(&r.x); secp256k1_fe_normalize(&r.y); secp256k1_fe_get_b32(b, &r.x); secp256k1_scalar_set_b32(&sig->r, b, &overflow); if (secp256k1_scalar_is_zero(&sig->r)) { /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */ secp256k1_gej_clear(&rp); secp256k1_ge_clear(&r); return 0; } if (recid) *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); secp256k1_scalar_mul(&n, &sig->r, seckey); secp256k1_scalar_add(&n, &n, message); secp256k1_scalar_inverse(&sig->s, nonce); secp256k1_scalar_mul(&sig->s, &sig->s, &n); secp256k1_scalar_clear(&n); secp256k1_gej_clear(&rp); secp256k1_ge_clear(&r); if (secp256k1_scalar_is_zero(&sig->s)) return 0; if (secp256k1_scalar_is_high(&sig->s)) { secp256k1_scalar_negate(&sig->s, &sig->s); if (recid) *recid ^= 1; } return 1; } #endif