// Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c // by Markku-Juhani O. Saarinen #include #include #include #include #include // For std::begin and std::end. #include // Internal implementation code. namespace { uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); } } // namespace void KeccakF(uint64_t (&st)[25]) { static constexpr uint64_t RNDC[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; static constexpr int ROUNDS = 24; for (int round = 0; round < ROUNDS; ++round) { uint64_t bc0, bc1, bc2, bc3, bc4, t; // Theta bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; t = bc4 ^ Rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t; t = bc0 ^ Rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t; t = bc1 ^ Rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t; t = bc2 ^ Rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t; t = bc3 ^ Rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t; // Rho Pi t = st[1]; bc0 = st[10]; st[10] = Rotl(t, 1); t = bc0; bc0 = st[7]; st[7] = Rotl(t, 3); t = bc0; bc0 = st[11]; st[11] = Rotl(t, 6); t = bc0; bc0 = st[17]; st[17] = Rotl(t, 10); t = bc0; bc0 = st[18]; st[18] = Rotl(t, 15); t = bc0; bc0 = st[3]; st[3] = Rotl(t, 21); t = bc0; bc0 = st[5]; st[5] = Rotl(t, 28); t = bc0; bc0 = st[16]; st[16] = Rotl(t, 36); t = bc0; bc0 = st[8]; st[8] = Rotl(t, 45); t = bc0; bc0 = st[21]; st[21] = Rotl(t, 55); t = bc0; bc0 = st[24]; st[24] = Rotl(t, 2); t = bc0; bc0 = st[4]; st[4] = Rotl(t, 14); t = bc0; bc0 = st[15]; st[15] = Rotl(t, 27); t = bc0; bc0 = st[23]; st[23] = Rotl(t, 41); t = bc0; bc0 = st[19]; st[19] = Rotl(t, 56); t = bc0; bc0 = st[13]; st[13] = Rotl(t, 8); t = bc0; bc0 = st[12]; st[12] = Rotl(t, 25); t = bc0; bc0 = st[2]; st[2] = Rotl(t, 43); t = bc0; bc0 = st[20]; st[20] = Rotl(t, 62); t = bc0; bc0 = st[14]; st[14] = Rotl(t, 18); t = bc0; bc0 = st[22]; st[22] = Rotl(t, 39); t = bc0; bc0 = st[9]; st[9] = Rotl(t, 61); t = bc0; bc0 = st[6]; st[6] = Rotl(t, 20); t = bc0; st[1] = Rotl(t, 44); // Chi Iota bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4]; st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round]; st[1] = bc1 ^ (~bc2 & bc3); st[2] = bc2 ^ (~bc3 & bc4); st[3] = bc3 ^ (~bc4 & bc0); st[4] = bc4 ^ (~bc0 & bc1); bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9]; st[5] = bc0 ^ (~bc1 & bc2); st[6] = bc1 ^ (~bc2 & bc3); st[7] = bc2 ^ (~bc3 & bc4); st[8] = bc3 ^ (~bc4 & bc0); st[9] = bc4 ^ (~bc0 & bc1); bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14]; st[10] = bc0 ^ (~bc1 & bc2); st[11] = bc1 ^ (~bc2 & bc3); st[12] = bc2 ^ (~bc3 & bc4); st[13] = bc3 ^ (~bc4 & bc0); st[14] = bc4 ^ (~bc0 & bc1); bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19]; st[15] = bc0 ^ (~bc1 & bc2); st[16] = bc1 ^ (~bc2 & bc3); st[17] = bc2 ^ (~bc3 & bc4); st[18] = bc3 ^ (~bc4 & bc0); st[19] = bc4 ^ (~bc0 & bc1); bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24]; st[20] = bc0 ^ (~bc1 & bc2); st[21] = bc1 ^ (~bc2 & bc3); st[22] = bc2 ^ (~bc3 & bc4); st[23] = bc3 ^ (~bc4 & bc0); st[24] = bc4 ^ (~bc0 & bc1); } } SHA3_256& SHA3_256::Write(Span data) { if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) { // Fill the buffer and process it. std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize); data = data.subspan(sizeof(m_buffer) - m_bufsize); m_state[m_pos++] ^= ReadLE64(m_buffer); m_bufsize = 0; if (m_pos == RATE_BUFFERS) { KeccakF(m_state); m_pos = 0; } } while (data.size() >= sizeof(m_buffer)) { // Process chunks directly from the buffer. m_state[m_pos++] ^= ReadLE64(data.data()); data = data.subspan(8); if (m_pos == RATE_BUFFERS) { KeccakF(m_state); m_pos = 0; } } if (data.size()) { // Keep the remainder in the buffer. std::copy(data.begin(), data.end(), m_buffer + m_bufsize); m_bufsize += data.size(); } return *this; } SHA3_256& SHA3_256::Finalize(Span output) { assert(output.size() == OUTPUT_SIZE); std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0); m_buffer[m_bufsize] ^= 0x06; m_state[m_pos] ^= ReadLE64(m_buffer); m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000; KeccakF(m_state); for (unsigned i = 0; i < 4; ++i) { WriteLE64(output.data() + 8 * i, m_state[i]); } return *this; } SHA3_256& SHA3_256::Reset() { m_bufsize = 0; m_pos = 0; std::fill(std::begin(m_state), std::end(m_state), 0); return *this; }