// Copyright (c) 2012-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include bool CCoinsView::GetCoin(const COutPoint &outpoint, Coin &coin) const { return false; } uint256 CCoinsView::GetBestBlock() const { return uint256(); } std::vector CCoinsView::GetHeadBlocks() const { return std::vector(); } bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, bool erase) { return false; } std::unique_ptr CCoinsView::Cursor() const { return nullptr; } bool CCoinsView::HaveCoin(const COutPoint &outpoint) const { Coin coin; return GetCoin(outpoint, coin); } CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { } bool CCoinsViewBacked::GetCoin(const COutPoint &outpoint, Coin &coin) const { return base->GetCoin(outpoint, coin); } bool CCoinsViewBacked::HaveCoin(const COutPoint &outpoint) const { return base->HaveCoin(outpoint); } uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); } std::vector CCoinsViewBacked::GetHeadBlocks() const { return base->GetHeadBlocks(); } void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; } bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, bool erase) { return base->BatchWrite(mapCoins, hashBlock, erase); } std::unique_ptr CCoinsViewBacked::Cursor() const { return base->Cursor(); } size_t CCoinsViewBacked::EstimateSize() const { return base->EstimateSize(); } CCoinsViewCache::CCoinsViewCache(CCoinsView* baseIn, bool deterministic) : CCoinsViewBacked(baseIn), m_deterministic(deterministic), cacheCoins(0, SaltedOutpointHasher(/*deterministic=*/deterministic)) {} size_t CCoinsViewCache::DynamicMemoryUsage() const { return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage; } CCoinsMap::iterator CCoinsViewCache::FetchCoin(const COutPoint &outpoint) const { CCoinsMap::iterator it = cacheCoins.find(outpoint); if (it != cacheCoins.end()) return it; Coin tmp; if (!base->GetCoin(outpoint, tmp)) return cacheCoins.end(); CCoinsMap::iterator ret = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::forward_as_tuple(std::move(tmp))).first; if (ret->second.coin.IsSpent()) { // The parent only has an empty entry for this outpoint; we can consider our // version as fresh. ret->second.flags = CCoinsCacheEntry::FRESH; } cachedCoinsUsage += ret->second.coin.DynamicMemoryUsage(); return ret; } bool CCoinsViewCache::GetCoin(const COutPoint &outpoint, Coin &coin) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); if (it != cacheCoins.end()) { coin = it->second.coin; return !coin.IsSpent(); } return false; } void CCoinsViewCache::AddCoin(const COutPoint &outpoint, Coin&& coin, bool possible_overwrite) { assert(!coin.IsSpent()); if (coin.out.scriptPubKey.IsUnspendable()) return; CCoinsMap::iterator it; bool inserted; std::tie(it, inserted) = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::tuple<>()); bool fresh = false; if (!inserted) { cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); } if (!possible_overwrite) { if (!it->second.coin.IsSpent()) { throw std::logic_error("Attempted to overwrite an unspent coin (when possible_overwrite is false)"); } // If the coin exists in this cache as a spent coin and is DIRTY, then // its spentness hasn't been flushed to the parent cache. We're // re-adding the coin to this cache now but we can't mark it as FRESH. // If we mark it FRESH and then spend it before the cache is flushed // we would remove it from this cache and would never flush spentness // to the parent cache. // // Re-adding a spent coin can happen in the case of a re-org (the coin // is 'spent' when the block adding it is disconnected and then // re-added when it is also added in a newly connected block). // // If the coin doesn't exist in the current cache, or is spent but not // DIRTY, then it can be marked FRESH. fresh = !(it->second.flags & CCoinsCacheEntry::DIRTY); } it->second.coin = std::move(coin); it->second.flags |= CCoinsCacheEntry::DIRTY | (fresh ? CCoinsCacheEntry::FRESH : 0); cachedCoinsUsage += it->second.coin.DynamicMemoryUsage(); TRACE5(utxocache, add, outpoint.hash.data(), (uint32_t)outpoint.n, (uint32_t)it->second.coin.nHeight, (int64_t)it->second.coin.out.nValue, (bool)it->second.coin.IsCoinBase()); } void CCoinsViewCache::EmplaceCoinInternalDANGER(COutPoint&& outpoint, Coin&& coin) { cachedCoinsUsage += coin.DynamicMemoryUsage(); cacheCoins.emplace( std::piecewise_construct, std::forward_as_tuple(std::move(outpoint)), std::forward_as_tuple(std::move(coin), CCoinsCacheEntry::DIRTY)); } void AddCoins(CCoinsViewCache& cache, const CTransaction &tx, int nHeight, bool check_for_overwrite) { bool fCoinbase = tx.IsCoinBase(); const uint256& txid = tx.GetHash(); for (size_t i = 0; i < tx.vout.size(); ++i) { bool overwrite = check_for_overwrite ? cache.HaveCoin(COutPoint(txid, i)) : fCoinbase; // Coinbase transactions can always be overwritten, in order to correctly // deal with the pre-BIP30 occurrences of duplicate coinbase transactions. cache.AddCoin(COutPoint(txid, i), Coin(tx.vout[i], nHeight, fCoinbase), overwrite); } } bool CCoinsViewCache::SpendCoin(const COutPoint &outpoint, Coin* moveout) { CCoinsMap::iterator it = FetchCoin(outpoint); if (it == cacheCoins.end()) return false; cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); TRACE5(utxocache, spent, outpoint.hash.data(), (uint32_t)outpoint.n, (uint32_t)it->second.coin.nHeight, (int64_t)it->second.coin.out.nValue, (bool)it->second.coin.IsCoinBase()); if (moveout) { *moveout = std::move(it->second.coin); } if (it->second.flags & CCoinsCacheEntry::FRESH) { cacheCoins.erase(it); } else { it->second.flags |= CCoinsCacheEntry::DIRTY; it->second.coin.Clear(); } return true; } static const Coin coinEmpty; const Coin& CCoinsViewCache::AccessCoin(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); if (it == cacheCoins.end()) { return coinEmpty; } else { return it->second.coin; } } bool CCoinsViewCache::HaveCoin(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); return (it != cacheCoins.end() && !it->second.coin.IsSpent()); } bool CCoinsViewCache::HaveCoinInCache(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = cacheCoins.find(outpoint); return (it != cacheCoins.end() && !it->second.coin.IsSpent()); } uint256 CCoinsViewCache::GetBestBlock() const { if (hashBlock.IsNull()) hashBlock = base->GetBestBlock(); return hashBlock; } void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) { hashBlock = hashBlockIn; } bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn, bool erase) { for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end(); it = erase ? mapCoins.erase(it) : std::next(it)) { // Ignore non-dirty entries (optimization). if (!(it->second.flags & CCoinsCacheEntry::DIRTY)) { continue; } CCoinsMap::iterator itUs = cacheCoins.find(it->first); if (itUs == cacheCoins.end()) { // The parent cache does not have an entry, while the child cache does. // We can ignore it if it's both spent and FRESH in the child if (!(it->second.flags & CCoinsCacheEntry::FRESH && it->second.coin.IsSpent())) { // Create the coin in the parent cache, move the data up // and mark it as dirty. CCoinsCacheEntry& entry = cacheCoins[it->first]; if (erase) { // The `move` call here is purely an optimization; we rely on the // `mapCoins.erase` call in the `for` expression to actually remove // the entry from the child map. entry.coin = std::move(it->second.coin); } else { entry.coin = it->second.coin; } cachedCoinsUsage += entry.coin.DynamicMemoryUsage(); entry.flags = CCoinsCacheEntry::DIRTY; // We can mark it FRESH in the parent if it was FRESH in the child // Otherwise it might have just been flushed from the parent's cache // and already exist in the grandparent if (it->second.flags & CCoinsCacheEntry::FRESH) { entry.flags |= CCoinsCacheEntry::FRESH; } } } else { // Found the entry in the parent cache if ((it->second.flags & CCoinsCacheEntry::FRESH) && !itUs->second.coin.IsSpent()) { // The coin was marked FRESH in the child cache, but the coin // exists in the parent cache. If this ever happens, it means // the FRESH flag was misapplied and there is a logic error in // the calling code. throw std::logic_error("FRESH flag misapplied to coin that exists in parent cache"); } if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coin.IsSpent()) { // The grandparent cache does not have an entry, and the coin // has been spent. We can just delete it from the parent cache. cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage(); cacheCoins.erase(itUs); } else { // A normal modification. cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage(); if (erase) { // The `move` call here is purely an optimization; we rely on the // `mapCoins.erase` call in the `for` expression to actually remove // the entry from the child map. itUs->second.coin = std::move(it->second.coin); } else { itUs->second.coin = it->second.coin; } cachedCoinsUsage += itUs->second.coin.DynamicMemoryUsage(); itUs->second.flags |= CCoinsCacheEntry::DIRTY; // NOTE: It isn't safe to mark the coin as FRESH in the parent // cache. If it already existed and was spent in the parent // cache then marking it FRESH would prevent that spentness // from being flushed to the grandparent. } } } hashBlock = hashBlockIn; return true; } bool CCoinsViewCache::Flush() { bool fOk = base->BatchWrite(cacheCoins, hashBlock, /*erase=*/true); if (fOk && !cacheCoins.empty()) { /* BatchWrite must erase all cacheCoins elements when erase=true. */ throw std::logic_error("Not all cached coins were erased"); } cachedCoinsUsage = 0; return fOk; } bool CCoinsViewCache::Sync() { bool fOk = base->BatchWrite(cacheCoins, hashBlock, /*erase=*/false); // Instead of clearing `cacheCoins` as we would in Flush(), just clear the // FRESH/DIRTY flags of any coin that isn't spent. for (auto it = cacheCoins.begin(); it != cacheCoins.end(); ) { if (it->second.coin.IsSpent()) { cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); it = cacheCoins.erase(it); } else { it->second.flags = 0; ++it; } } return fOk; } void CCoinsViewCache::Uncache(const COutPoint& hash) { CCoinsMap::iterator it = cacheCoins.find(hash); if (it != cacheCoins.end() && it->second.flags == 0) { cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); TRACE5(utxocache, uncache, hash.hash.data(), (uint32_t)hash.n, (uint32_t)it->second.coin.nHeight, (int64_t)it->second.coin.out.nValue, (bool)it->second.coin.IsCoinBase()); cacheCoins.erase(it); } } unsigned int CCoinsViewCache::GetCacheSize() const { return cacheCoins.size(); } bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const { if (!tx.IsCoinBase()) { for (unsigned int i = 0; i < tx.vin.size(); i++) { if (!HaveCoin(tx.vin[i].prevout)) { return false; } } } return true; } void CCoinsViewCache::ReallocateCache() { // Cache should be empty when we're calling this. assert(cacheCoins.size() == 0); cacheCoins.~CCoinsMap(); ::new (&cacheCoins) CCoinsMap(0, SaltedOutpointHasher(/*deterministic=*/m_deterministic)); } void CCoinsViewCache::SanityCheck() const { size_t recomputed_usage = 0; for (const auto& [_, entry] : cacheCoins) { unsigned attr = 0; if (entry.flags & CCoinsCacheEntry::DIRTY) attr |= 1; if (entry.flags & CCoinsCacheEntry::FRESH) attr |= 2; if (entry.coin.IsSpent()) attr |= 4; // Only 5 combinations are possible. assert(attr != 2 && attr != 4 && attr != 7); // Recompute cachedCoinsUsage. recomputed_usage += entry.coin.DynamicMemoryUsage(); } assert(recomputed_usage == cachedCoinsUsage); } static const size_t MIN_TRANSACTION_OUTPUT_WEIGHT = WITNESS_SCALE_FACTOR * ::GetSerializeSize(CTxOut(), PROTOCOL_VERSION); static const size_t MAX_OUTPUTS_PER_BLOCK = MAX_BLOCK_WEIGHT / MIN_TRANSACTION_OUTPUT_WEIGHT; const Coin& AccessByTxid(const CCoinsViewCache& view, const uint256& txid) { COutPoint iter(txid, 0); while (iter.n < MAX_OUTPUTS_PER_BLOCK) { const Coin& alternate = view.AccessCoin(iter); if (!alternate.IsSpent()) return alternate; ++iter.n; } return coinEmpty; } bool CCoinsViewErrorCatcher::GetCoin(const COutPoint &outpoint, Coin &coin) const { try { return CCoinsViewBacked::GetCoin(outpoint, coin); } catch(const std::runtime_error& e) { for (const auto& f : m_err_callbacks) { f(); } LogPrintf("Error reading from database: %s\n", e.what()); // Starting the shutdown sequence and returning false to the caller would be // interpreted as 'entry not found' (as opposed to unable to read data), and // could lead to invalid interpretation. Just exit immediately, as we can't // continue anyway, and all writes should be atomic. std::abort(); } }