// Copyright (c) 2012-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHECKQUEUE_H #define BITCOIN_CHECKQUEUE_H #include #include #include #include #include #include template class CCheckQueueControl; /** * Queue for verifications that have to be performed. * The verifications are represented by a type T, which must provide an * operator(), returning a bool. * * One thread (the master) is assumed to push batches of verifications * onto the queue, where they are processed by N-1 worker threads. When * the master is done adding work, it temporarily joins the worker pool * as an N'th worker, until all jobs are done. */ template class CCheckQueue { private: //! Mutex to protect the inner state Mutex m_mutex; //! Worker threads block on this when out of work std::condition_variable m_worker_cv; //! Master thread blocks on this when out of work std::condition_variable m_master_cv; //! The queue of elements to be processed. //! As the order of booleans doesn't matter, it is used as a LIFO (stack) std::vector queue GUARDED_BY(m_mutex); //! The number of workers (including the master) that are idle. int nIdle GUARDED_BY(m_mutex){0}; //! The total number of workers (including the master). int nTotal GUARDED_BY(m_mutex){0}; //! The temporary evaluation result. bool fAllOk GUARDED_BY(m_mutex){true}; /** * Number of verifications that haven't completed yet. * This includes elements that are no longer queued, but still in the * worker's own batches. */ unsigned int nTodo GUARDED_BY(m_mutex){0}; //! The maximum number of elements to be processed in one batch const unsigned int nBatchSize; std::vector m_worker_threads; bool m_request_stop GUARDED_BY(m_mutex){false}; /** Internal function that does bulk of the verification work. */ bool Loop(bool fMaster) { std::condition_variable& cond = fMaster ? m_master_cv : m_worker_cv; std::vector vChecks; vChecks.reserve(nBatchSize); unsigned int nNow = 0; bool fOk = true; do { { WAIT_LOCK(m_mutex, lock); // first do the clean-up of the previous loop run (allowing us to do it in the same critsect) if (nNow) { fAllOk &= fOk; nTodo -= nNow; if (nTodo == 0 && !fMaster) // We processed the last element; inform the master it can exit and return the result m_master_cv.notify_one(); } else { // first iteration nTotal++; } // logically, the do loop starts here while (queue.empty() && !m_request_stop) { if (fMaster && nTodo == 0) { nTotal--; bool fRet = fAllOk; // reset the status for new work later fAllOk = true; // return the current status return fRet; } nIdle++; cond.wait(lock); // wait nIdle--; } if (m_request_stop) { return false; } // Decide how many work units to process now. // * Do not try to do everything at once, but aim for increasingly smaller batches so // all workers finish approximately simultaneously. // * Try to account for idle jobs which will instantly start helping. // * Don't do batches smaller than 1 (duh), or larger than nBatchSize. nNow = std::max(1U, std::min(nBatchSize, (unsigned int)queue.size() / (nTotal + nIdle + 1))); vChecks.resize(nNow); for (unsigned int i = 0; i < nNow; i++) { // We want the lock on the m_mutex to be as short as possible, so swap jobs from the global // queue to the local batch vector instead of copying. vChecks[i].swap(queue.back()); queue.pop_back(); } // Check whether we need to do work at all fOk = fAllOk; } // execute work for (T& check : vChecks) if (fOk) fOk = check(); vChecks.clear(); } while (true); } public: //! Mutex to ensure only one concurrent CCheckQueueControl Mutex m_control_mutex; //! Create a new check queue explicit CCheckQueue(unsigned int nBatchSizeIn) : nBatchSize(nBatchSizeIn) { } //! Create a pool of new worker threads. void StartWorkerThreads(const int threads_num) { { LOCK(m_mutex); nIdle = 0; nTotal = 0; fAllOk = true; } assert(m_worker_threads.empty()); for (int n = 0; n < threads_num; ++n) { m_worker_threads.emplace_back([this, n]() { util::ThreadRename(strprintf("scriptch.%i", n)); SetSyscallSandboxPolicy(SyscallSandboxPolicy::VALIDATION_SCRIPT_CHECK); Loop(false /* worker thread */); }); } } //! Wait until execution finishes, and return whether all evaluations were successful. bool Wait() { return Loop(true /* master thread */); } //! Add a batch of checks to the queue void Add(std::vector& vChecks) { if (vChecks.empty()) { return; } { LOCK(m_mutex); for (T& check : vChecks) { queue.emplace_back(); check.swap(queue.back()); } nTodo += vChecks.size(); } if (vChecks.size() == 1) { m_worker_cv.notify_one(); } else { m_worker_cv.notify_all(); } } //! Stop all of the worker threads. void StopWorkerThreads() { WITH_LOCK(m_mutex, m_request_stop = true); m_worker_cv.notify_all(); for (std::thread& t : m_worker_threads) { t.join(); } m_worker_threads.clear(); WITH_LOCK(m_mutex, m_request_stop = false); } ~CCheckQueue() { assert(m_worker_threads.empty()); } }; /** * RAII-style controller object for a CCheckQueue that guarantees the passed * queue is finished before continuing. */ template class CCheckQueueControl { private: CCheckQueue * const pqueue; bool fDone; public: CCheckQueueControl() = delete; CCheckQueueControl(const CCheckQueueControl&) = delete; CCheckQueueControl& operator=(const CCheckQueueControl&) = delete; explicit CCheckQueueControl(CCheckQueue * const pqueueIn) : pqueue(pqueueIn), fDone(false) { // passed queue is supposed to be unused, or nullptr if (pqueue != nullptr) { ENTER_CRITICAL_SECTION(pqueue->m_control_mutex); } } bool Wait() { if (pqueue == nullptr) return true; bool fRet = pqueue->Wait(); fDone = true; return fRet; } void Add(std::vector& vChecks) { if (pqueue != nullptr) pqueue->Add(vChecks); } ~CCheckQueueControl() { if (!fDone) Wait(); if (pqueue != nullptr) { LEAVE_CRITICAL_SECTION(pqueue->m_control_mutex); } } }; #endif // BITCOIN_CHECKQUEUE_H