// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include std::string CBlockFileInfo::ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, FormatISO8601Date(nTimeFirst), FormatISO8601Date(nTimeLast)); } std::string CBlockIndex::ToString() const { return strprintf("CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, nHeight, hashMerkleRoot.ToString(), GetBlockHash().ToString()); } void CChain::SetTip(CBlockIndex& block) { CBlockIndex* pindex = █ vChain.resize(pindex->nHeight + 1); while (pindex && vChain[pindex->nHeight] != pindex) { vChain[pindex->nHeight] = pindex; pindex = pindex->pprev; } } std::vector LocatorEntries(const CBlockIndex* index) { int step = 1; std::vector have; if (index == nullptr) return have; have.reserve(32); while (index) { have.emplace_back(index->GetBlockHash()); if (index->nHeight == 0) break; // Exponentially larger steps back, plus the genesis block. int height = std::max(index->nHeight - step, 0); // Use skiplist. index = index->GetAncestor(height); if (have.size() > 10) step *= 2; } return have; } CBlockLocator GetLocator(const CBlockIndex* index) { return CBlockLocator{LocatorEntries(index)}; } CBlockLocator CChain::GetLocator() const { return ::GetLocator(Tip()); } const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const { if (pindex == nullptr) { return nullptr; } if (pindex->nHeight > Height()) pindex = pindex->GetAncestor(Height()); while (pindex && !Contains(pindex)) pindex = pindex->pprev; return pindex; } CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime, int height) const { std::pair blockparams = std::make_pair(nTime, height); std::vector::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), blockparams, [](CBlockIndex* pBlock, const std::pair& blockparams) -> bool { return pBlock->GetBlockTimeMax() < blockparams.first || pBlock->nHeight < blockparams.second; }); return (lower == vChain.end() ? nullptr : *lower); } /** Turn the lowest '1' bit in the binary representation of a number into a '0'. */ int static inline InvertLowestOne(int n) { return n & (n - 1); } /** Compute what height to jump back to with the CBlockIndex::pskip pointer. */ int static inline GetSkipHeight(int height) { if (height < 2) return 0; // Determine which height to jump back to. Any number strictly lower than height is acceptable, // but the following expression seems to perform well in simulations (max 110 steps to go back // up to 2**18 blocks). return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height); } const CBlockIndex* CBlockIndex::GetAncestor(int height) const { if (height > nHeight || height < 0) { return nullptr; } const CBlockIndex* pindexWalk = this; int heightWalk = nHeight; while (heightWalk > height) { int heightSkip = GetSkipHeight(heightWalk); int heightSkipPrev = GetSkipHeight(heightWalk - 1); if (pindexWalk->pskip != nullptr && (heightSkip == height || (heightSkip > height && !(heightSkipPrev < heightSkip - 2 && heightSkipPrev >= height)))) { // Only follow pskip if pprev->pskip isn't better than pskip->pprev. pindexWalk = pindexWalk->pskip; heightWalk = heightSkip; } else { assert(pindexWalk->pprev); pindexWalk = pindexWalk->pprev; heightWalk--; } } return pindexWalk; } CBlockIndex* CBlockIndex::GetAncestor(int height) { return const_cast(static_cast(this)->GetAncestor(height)); } void CBlockIndex::BuildSkip() { if (pprev) pskip = pprev->GetAncestor(GetSkipHeight(nHeight)); } arith_uint256 GetBlockProof(const CBlockIndex& block) { arith_uint256 bnTarget; bool fNegative; bool fOverflow; bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow); if (fNegative || fOverflow || bnTarget == 0) return 0; // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 // as it's too large for an arith_uint256. However, as 2**256 is at least as large // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, // or ~bnTarget / (bnTarget+1) + 1. return (~bnTarget / (bnTarget + 1)) + 1; } int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params) { arith_uint256 r; int sign = 1; if (to.nChainWork > from.nChainWork) { r = to.nChainWork - from.nChainWork; } else { r = from.nChainWork - to.nChainWork; sign = -1; } r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip); if (r.bits() > 63) { return sign * std::numeric_limits::max(); } return sign * int64_t(r.GetLow64()); } /** Find the last common ancestor two blocks have. * Both pa and pb must be non-nullptr. */ const CBlockIndex* LastCommonAncestor(const CBlockIndex* pa, const CBlockIndex* pb) { if (pa->nHeight > pb->nHeight) { pa = pa->GetAncestor(pb->nHeight); } else if (pb->nHeight > pa->nHeight) { pb = pb->GetAncestor(pa->nHeight); } while (pa != pb && pa && pb) { pa = pa->pprev; pb = pb->pprev; } // Eventually all chain branches meet at the genesis block. assert(pa == pb); return pa; }