// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_BIGNUM_H #define BITCOIN_BIGNUM_H #include #include #include #include "util.h" // for uint64 /** Errors thrown by the bignum class */ class bignum_error : public std::runtime_error { public: explicit bignum_error(const std::string& str) : std::runtime_error(str) {} }; /** RAII encapsulated BN_CTX (OpenSSL bignum context) */ class CAutoBN_CTX { protected: BN_CTX* pctx; BN_CTX* operator=(BN_CTX* pnew) { return pctx = pnew; } public: CAutoBN_CTX() { pctx = BN_CTX_new(); if (pctx == NULL) throw bignum_error("CAutoBN_CTX : BN_CTX_new() returned NULL"); } ~CAutoBN_CTX() { if (pctx != NULL) BN_CTX_free(pctx); } operator BN_CTX*() { return pctx; } BN_CTX& operator*() { return *pctx; } BN_CTX** operator&() { return &pctx; } bool operator!() { return (pctx == NULL); } }; /** C++ wrapper for BIGNUM (OpenSSL bignum) */ class CBigNum : public BIGNUM { public: CBigNum() { BN_init(this); } CBigNum(const CBigNum& b) { BN_init(this); if (!BN_copy(this, &b)) { BN_clear_free(this); throw bignum_error("CBigNum::CBigNum(const CBigNum&) : BN_copy failed"); } } CBigNum& operator=(const CBigNum& b) { if (!BN_copy(this, &b)) throw bignum_error("CBigNum::operator= : BN_copy failed"); return (*this); } ~CBigNum() { BN_clear_free(this); } //CBigNum(char n) is not portable. Use 'signed char' or 'unsigned char'. CBigNum(signed char n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(short n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(int n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(long n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(int64 n) { BN_init(this); setint64(n); } CBigNum(unsigned char n) { BN_init(this); setulong(n); } CBigNum(unsigned short n) { BN_init(this); setulong(n); } CBigNum(unsigned int n) { BN_init(this); setulong(n); } CBigNum(unsigned long n) { BN_init(this); setulong(n); } CBigNum(uint64 n) { BN_init(this); setuint64(n); } explicit CBigNum(uint256 n) { BN_init(this); setuint256(n); } explicit CBigNum(const std::vector& vch) { BN_init(this); setvch(vch); } void setulong(unsigned long n) { if (!BN_set_word(this, n)) throw bignum_error("CBigNum conversion from unsigned long : BN_set_word failed"); } unsigned long getulong() const { return BN_get_word(this); } unsigned int getuint() const { return BN_get_word(this); } int getint() const { unsigned long n = BN_get_word(this); if (!BN_is_negative(this)) return (n > (unsigned long)std::numeric_limits::max() ? std::numeric_limits::max() : n); else return (n > (unsigned long)std::numeric_limits::max() ? std::numeric_limits::min() : -(int)n); } void setint64(int64 sn) { unsigned char pch[sizeof(sn) + 6]; unsigned char* p = pch + 4; bool fNegative; uint64 n; if (sn < (int64)0) { // Since the minimum signed integer cannot be represented as positive so long as its type is signed, and it's not well-defined what happens if you make it unsigned before negating it, we instead increment the negative integer by 1, convert it, then increment the (now positive) unsigned integer by 1 to compensate n = -(sn + 1); ++n; fNegative = true; } else { n = sn; fNegative = false; } bool fLeadingZeroes = true; for (int i = 0; i < 8; i++) { unsigned char c = (n >> 56) & 0xff; n <<= 8; if (fLeadingZeroes) { if (c == 0) continue; if (c & 0x80) *p++ = (fNegative ? 0x80 : 0); else if (fNegative) c |= 0x80; fLeadingZeroes = false; } *p++ = c; } unsigned int nSize = p - (pch + 4); pch[0] = (nSize >> 24) & 0xff; pch[1] = (nSize >> 16) & 0xff; pch[2] = (nSize >> 8) & 0xff; pch[3] = (nSize) & 0xff; BN_mpi2bn(pch, p - pch, this); } void setuint64(uint64 n) { unsigned char pch[sizeof(n) + 6]; unsigned char* p = pch + 4; bool fLeadingZeroes = true; for (int i = 0; i < 8; i++) { unsigned char c = (n >> 56) & 0xff; n <<= 8; if (fLeadingZeroes) { if (c == 0) continue; if (c & 0x80) *p++ = 0; fLeadingZeroes = false; } *p++ = c; } unsigned int nSize = p - (pch + 4); pch[0] = (nSize >> 24) & 0xff; pch[1] = (nSize >> 16) & 0xff; pch[2] = (nSize >> 8) & 0xff; pch[3] = (nSize) & 0xff; BN_mpi2bn(pch, p - pch, this); } void setuint256(uint256 n) { unsigned char pch[sizeof(n) + 6]; unsigned char* p = pch + 4; bool fLeadingZeroes = true; unsigned char* pbegin = (unsigned char*)&n; unsigned char* psrc = pbegin + sizeof(n); while (psrc != pbegin) { unsigned char c = *(--psrc); if (fLeadingZeroes) { if (c == 0) continue; if (c & 0x80) *p++ = 0; fLeadingZeroes = false; } *p++ = c; } unsigned int nSize = p - (pch + 4); pch[0] = (nSize >> 24) & 0xff; pch[1] = (nSize >> 16) & 0xff; pch[2] = (nSize >> 8) & 0xff; pch[3] = (nSize >> 0) & 0xff; BN_mpi2bn(pch, p - pch, this); } uint256 getuint256() { unsigned int nSize = BN_bn2mpi(this, NULL); if (nSize < 4) return 0; std::vector vch(nSize); BN_bn2mpi(this, &vch[0]); if (vch.size() > 4) vch[4] &= 0x7f; uint256 n = 0; for (unsigned int i = 0, j = vch.size()-1; i < sizeof(n) && j >= 4; i++, j--) ((unsigned char*)&n)[i] = vch[j]; return n; } void setvch(const std::vector& vch) { std::vector vch2(vch.size() + 4); unsigned int nSize = vch.size(); // BIGNUM's byte stream format expects 4 bytes of // big endian size data info at the front vch2[0] = (nSize >> 24) & 0xff; vch2[1] = (nSize >> 16) & 0xff; vch2[2] = (nSize >> 8) & 0xff; vch2[3] = (nSize >> 0) & 0xff; // swap data to big endian reverse_copy(vch.begin(), vch.end(), vch2.begin() + 4); BN_mpi2bn(&vch2[0], vch2.size(), this); } std::vector getvch() const { unsigned int nSize = BN_bn2mpi(this, NULL); if (nSize <= 4) return std::vector(); std::vector vch(nSize); BN_bn2mpi(this, &vch[0]); vch.erase(vch.begin(), vch.begin() + 4); reverse(vch.begin(), vch.end()); return vch; } // The "compact" format is a representation of a whole // number N using an unsigned 32bit number similar to a // floating point format. // The most significant 8 bits are the unsigned exponent of base 256. // This exponent can be thought of as "number of bytes of N". // The lower 23 bits are the mantissa. // Bit number 24 (0x800000) represents the sign of N. // N = (-1^sign) * mantissa * 256^(exponent-3) // // Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). // MPI uses the most significant bit of the first byte as sign. // Thus 0x1234560000 is compact (0x05123456) // and 0xc0de000000 is compact (0x0600c0de) // (0x05c0de00) would be -0x40de000000 // // Bitcoin only uses this "compact" format for encoding difficulty // targets, which are unsigned 256bit quantities. Thus, all the // complexities of the sign bit and using base 256 are probably an // implementation accident. // // This implementation directly uses shifts instead of going // through an intermediate MPI representation. CBigNum& SetCompact(unsigned int nCompact) { unsigned int nSize = nCompact >> 24; bool fNegative =(nCompact & 0x00800000) != 0; unsigned int nWord = nCompact & 0x007fffff; if (nSize <= 3) { nWord >>= 8*(3-nSize); BN_set_word(this, nWord); } else { BN_set_word(this, nWord); BN_lshift(this, this, 8*(nSize-3)); } BN_set_negative(this, fNegative); return *this; } unsigned int GetCompact() const { unsigned int nSize = BN_num_bytes(this); unsigned int nCompact = 0; if (nSize <= 3) nCompact = BN_get_word(this) << 8*(3-nSize); else { CBigNum bn; BN_rshift(&bn, this, 8*(nSize-3)); nCompact = BN_get_word(&bn); } // The 0x00800000 bit denotes the sign. // Thus, if it is already set, divide the mantissa by 256 and increase the exponent. if (nCompact & 0x00800000) { nCompact >>= 8; nSize++; } nCompact |= nSize << 24; nCompact |= (BN_is_negative(this) ? 0x00800000 : 0); return nCompact; } void SetHex(const std::string& str) { // skip 0x const char* psz = str.c_str(); while (isspace(*psz)) psz++; bool fNegative = false; if (*psz == '-') { fNegative = true; psz++; } if (psz[0] == '0' && tolower(psz[1]) == 'x') psz += 2; while (isspace(*psz)) psz++; // hex string to bignum static signed char phexdigit[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0 }; *this = 0; while (isxdigit(*psz)) { *this <<= 4; int n = phexdigit[(unsigned char)*psz++]; *this += n; } if (fNegative) *this = 0 - *this; } std::string ToString(int nBase=10) const { CAutoBN_CTX pctx; CBigNum bnBase = nBase; CBigNum bn0 = 0; std::string str; CBigNum bn = *this; BN_set_negative(&bn, false); CBigNum dv; CBigNum rem; if (BN_cmp(&bn, &bn0) == 0) return "0"; while (BN_cmp(&bn, &bn0) > 0) { if (!BN_div(&dv, &rem, &bn, &bnBase, pctx)) throw bignum_error("CBigNum::ToString() : BN_div failed"); bn = dv; unsigned int c = rem.getulong(); str += "0123456789abcdef"[c]; } if (BN_is_negative(this)) str += "-"; reverse(str.begin(), str.end()); return str; } std::string GetHex() const { return ToString(16); } unsigned int GetSerializeSize(int nType=0, int nVersion=PROTOCOL_VERSION) const { return ::GetSerializeSize(getvch(), nType, nVersion); } template void Serialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION) const { ::Serialize(s, getvch(), nType, nVersion); } template void Unserialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION) { std::vector vch; ::Unserialize(s, vch, nType, nVersion); setvch(vch); } bool operator!() const { return BN_is_zero(this); } CBigNum& operator+=(const CBigNum& b) { if (!BN_add(this, this, &b)) throw bignum_error("CBigNum::operator+= : BN_add failed"); return *this; } CBigNum& operator-=(const CBigNum& b) { *this = *this - b; return *this; } CBigNum& operator*=(const CBigNum& b) { CAutoBN_CTX pctx; if (!BN_mul(this, this, &b, pctx)) throw bignum_error("CBigNum::operator*= : BN_mul failed"); return *this; } CBigNum& operator/=(const CBigNum& b) { *this = *this / b; return *this; } CBigNum& operator%=(const CBigNum& b) { *this = *this % b; return *this; } CBigNum& operator<<=(unsigned int shift) { if (!BN_lshift(this, this, shift)) throw bignum_error("CBigNum:operator<<= : BN_lshift failed"); return *this; } CBigNum& operator>>=(unsigned int shift) { // Note: BN_rshift segfaults on 64-bit if 2^shift is greater than the number // if built on ubuntu 9.04 or 9.10, probably depends on version of OpenSSL CBigNum a = 1; a <<= shift; if (BN_cmp(&a, this) > 0) { *this = 0; return *this; } if (!BN_rshift(this, this, shift)) throw bignum_error("CBigNum:operator>>= : BN_rshift failed"); return *this; } CBigNum& operator++() { // prefix operator if (!BN_add(this, this, BN_value_one())) throw bignum_error("CBigNum::operator++ : BN_add failed"); return *this; } const CBigNum operator++(int) { // postfix operator const CBigNum ret = *this; ++(*this); return ret; } CBigNum& operator--() { // prefix operator CBigNum r; if (!BN_sub(&r, this, BN_value_one())) throw bignum_error("CBigNum::operator-- : BN_sub failed"); *this = r; return *this; } const CBigNum operator--(int) { // postfix operator const CBigNum ret = *this; --(*this); return ret; } friend inline const CBigNum operator-(const CBigNum& a, const CBigNum& b); friend inline const CBigNum operator/(const CBigNum& a, const CBigNum& b); friend inline const CBigNum operator%(const CBigNum& a, const CBigNum& b); }; inline const CBigNum operator+(const CBigNum& a, const CBigNum& b) { CBigNum r; if (!BN_add(&r, &a, &b)) throw bignum_error("CBigNum::operator+ : BN_add failed"); return r; } inline const CBigNum operator-(const CBigNum& a, const CBigNum& b) { CBigNum r; if (!BN_sub(&r, &a, &b)) throw bignum_error("CBigNum::operator- : BN_sub failed"); return r; } inline const CBigNum operator-(const CBigNum& a) { CBigNum r(a); BN_set_negative(&r, !BN_is_negative(&r)); return r; } inline const CBigNum operator*(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_mul(&r, &a, &b, pctx)) throw bignum_error("CBigNum::operator* : BN_mul failed"); return r; } inline const CBigNum operator/(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_div(&r, NULL, &a, &b, pctx)) throw bignum_error("CBigNum::operator/ : BN_div failed"); return r; } inline const CBigNum operator%(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_mod(&r, &a, &b, pctx)) throw bignum_error("CBigNum::operator% : BN_div failed"); return r; } inline const CBigNum operator<<(const CBigNum& a, unsigned int shift) { CBigNum r; if (!BN_lshift(&r, &a, shift)) throw bignum_error("CBigNum:operator<< : BN_lshift failed"); return r; } inline const CBigNum operator>>(const CBigNum& a, unsigned int shift) { CBigNum r = a; r >>= shift; return r; } inline bool operator==(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) == 0); } inline bool operator!=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) != 0); } inline bool operator<=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) <= 0); } inline bool operator>=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) >= 0); } inline bool operator<(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) < 0); } inline bool operator>(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) > 0); } #endif