// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_ARITH_UINT256_H #define BITCOIN_ARITH_UINT256_H #include #include #include #include #include class uint256; class uint_error : public std::runtime_error { public: explicit uint_error(const std::string& str) : std::runtime_error(str) {} }; /** Template base class for unsigned big integers. */ template class base_uint { protected: static_assert(BITS / 32 > 0 && BITS % 32 == 0, "Template parameter BITS must be a positive multiple of 32."); static constexpr int WIDTH = BITS / 32; uint32_t pn[WIDTH]; public: base_uint() { for (int i = 0; i < WIDTH; i++) pn[i] = 0; } base_uint(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; } base_uint& operator=(const base_uint& b) { if (this != &b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; } return *this; } base_uint(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; } base_uint operator~() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; return ret; } base_uint operator-() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; ++ret; return ret; } double getdouble() const; base_uint& operator=(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; return *this; } base_uint& operator^=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] ^= b.pn[i]; return *this; } base_uint& operator&=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] &= b.pn[i]; return *this; } base_uint& operator|=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] |= b.pn[i]; return *this; } base_uint& operator^=(uint64_t b) { pn[0] ^= (unsigned int)b; pn[1] ^= (unsigned int)(b >> 32); return *this; } base_uint& operator|=(uint64_t b) { pn[0] |= (unsigned int)b; pn[1] |= (unsigned int)(b >> 32); return *this; } base_uint& operator<<=(unsigned int shift); base_uint& operator>>=(unsigned int shift); base_uint& operator+=(const base_uint& b) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + pn[i] + b.pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } base_uint& operator-=(const base_uint& b) { *this += -b; return *this; } base_uint& operator+=(uint64_t b64) { base_uint b; b = b64; *this += b; return *this; } base_uint& operator-=(uint64_t b64) { base_uint b; b = b64; *this += -b; return *this; } base_uint& operator*=(uint32_t b32); base_uint& operator*=(const base_uint& b); base_uint& operator/=(const base_uint& b); base_uint& operator++() { // prefix operator int i = 0; while (i < WIDTH && ++pn[i] == 0) i++; return *this; } base_uint operator++(int) { // postfix operator const base_uint ret = *this; ++(*this); return ret; } base_uint& operator--() { // prefix operator int i = 0; while (i < WIDTH && --pn[i] == std::numeric_limits::max()) i++; return *this; } base_uint operator--(int) { // postfix operator const base_uint ret = *this; --(*this); return ret; } int CompareTo(const base_uint& b) const; bool EqualTo(uint64_t b) const; friend inline base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; } friend inline base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; } friend inline base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; } friend inline base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; } friend inline base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; } friend inline base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; } friend inline base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; } friend inline base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; } friend inline base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; } friend inline base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; } friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; } friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; } friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; } friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; } friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; } friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; } friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); } friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); } std::string GetHex() const; std::string ToString() const; unsigned int size() const { return sizeof(pn); } /** * Returns the position of the highest bit set plus one, or zero if the * value is zero. */ unsigned int bits() const; uint64_t GetLow64() const { static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / 32). BITS is a template parameter."); return pn[0] | (uint64_t)pn[1] << 32; } }; /** 256-bit unsigned big integer. */ class arith_uint256 : public base_uint<256> { public: arith_uint256() = default; arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {} arith_uint256(uint64_t b) : base_uint<256>(b) {} /** * The "compact" format is a representation of a whole * number N using an unsigned 32bit number similar to a * floating point format. * The most significant 8 bits are the unsigned exponent of base 256. * This exponent can be thought of as "number of bytes of N". * The lower 23 bits are the mantissa. * Bit number 24 (0x800000) represents the sign of N. * N = (-1^sign) * mantissa * 256^(exponent-3) * * Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). * MPI uses the most significant bit of the first byte as sign. * Thus 0x1234560000 is compact (0x05123456) * and 0xc0de000000 is compact (0x0600c0de) * * Bitcoin only uses this "compact" format for encoding difficulty * targets, which are unsigned 256bit quantities. Thus, all the * complexities of the sign bit and using base 256 are probably an * implementation accident. */ arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr); uint32_t GetCompact(bool fNegative = false) const; friend uint256 ArithToUint256(const arith_uint256 &); friend arith_uint256 UintToArith256(const uint256 &); }; uint256 ArithToUint256(const arith_uint256 &); arith_uint256 UintToArith256(const uint256 &); extern template class base_uint<256>; #endif // BITCOIN_ARITH_UINT256_H