// Copyright (c) 2012 Pieter Wuille // Copyright (c) 2012-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_ADDRMAN_H #define BITCOIN_ADDRMAN_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Extended statistics about a CAddress */ class CAddrInfo : public CAddress { public: //! last try whatsoever by us (memory only) int64_t nLastTry{0}; //! last counted attempt (memory only) int64_t nLastCountAttempt{0}; private: //! where knowledge about this address first came from CNetAddr source; //! last successful connection by us int64_t nLastSuccess{0}; //! connection attempts since last successful attempt int nAttempts{0}; //! reference count in new sets (memory only) int nRefCount{0}; //! in tried set? (memory only) bool fInTried{false}; //! position in vRandom int nRandomPos{-1}; friend class CAddrMan; public: SERIALIZE_METHODS(CAddrInfo, obj) { READWRITEAS(CAddress, obj); READWRITE(obj.source, obj.nLastSuccess, obj.nAttempts); } CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn), source(addrSource) { } CAddrInfo() : CAddress(), source() { } //! Calculate in which "tried" bucket this entry belongs int GetTriedBucket(const uint256 &nKey, const std::vector &asmap) const; //! Calculate in which "new" bucket this entry belongs, given a certain source int GetNewBucket(const uint256 &nKey, const CNetAddr& src, const std::vector &asmap) const; //! Calculate in which "new" bucket this entry belongs, using its default source int GetNewBucket(const uint256 &nKey, const std::vector &asmap) const { return GetNewBucket(nKey, source, asmap); } //! Calculate in which position of a bucket to store this entry. int GetBucketPosition(const uint256 &nKey, bool fNew, int nBucket) const; //! Determine whether the statistics about this entry are bad enough so that it can just be deleted bool IsTerrible(int64_t nNow = GetAdjustedTime()) const; //! Calculate the relative chance this entry should be given when selecting nodes to connect to double GetChance(int64_t nNow = GetAdjustedTime()) const; }; /** Stochastic address manager * * Design goals: * * Keep the address tables in-memory, and asynchronously dump the entire table to peers.dat. * * Make sure no (localized) attacker can fill the entire table with his nodes/addresses. * * To that end: * * Addresses are organized into buckets. * * Addresses that have not yet been tried go into 1024 "new" buckets. * * Based on the address range (/16 for IPv4) of the source of information, 64 buckets are selected at random. * * The actual bucket is chosen from one of these, based on the range in which the address itself is located. * * One single address can occur in up to 8 different buckets to increase selection chances for addresses that * are seen frequently. The chance for increasing this multiplicity decreases exponentially. * * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen * ones) is removed from it first. * * Addresses of nodes that are known to be accessible go into 256 "tried" buckets. * * Each address range selects at random 8 of these buckets. * * The actual bucket is chosen from one of these, based on the full address. * * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently * tried ones) is evicted from it, back to the "new" buckets. * * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not * be observable by adversaries. * * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive) * consistency checks for the entire data structure. */ //! total number of buckets for tried addresses #define ADDRMAN_TRIED_BUCKET_COUNT_LOG2 8 //! total number of buckets for new addresses #define ADDRMAN_NEW_BUCKET_COUNT_LOG2 10 //! maximum allowed number of entries in buckets for new and tried addresses #define ADDRMAN_BUCKET_SIZE_LOG2 6 //! over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread #define ADDRMAN_TRIED_BUCKETS_PER_GROUP 8 //! over how many buckets entries with new addresses originating from a single group are spread #define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 64 //! in how many buckets for entries with new addresses a single address may occur #define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 8 //! how old addresses can maximally be #define ADDRMAN_HORIZON_DAYS 30 //! after how many failed attempts we give up on a new node #define ADDRMAN_RETRIES 3 //! how many successive failures are allowed ... #define ADDRMAN_MAX_FAILURES 10 //! ... in at least this many days #define ADDRMAN_MIN_FAIL_DAYS 7 //! how recent a successful connection should be before we allow an address to be evicted from tried #define ADDRMAN_REPLACEMENT_HOURS 4 //! Convenience #define ADDRMAN_TRIED_BUCKET_COUNT (1 << ADDRMAN_TRIED_BUCKET_COUNT_LOG2) #define ADDRMAN_NEW_BUCKET_COUNT (1 << ADDRMAN_NEW_BUCKET_COUNT_LOG2) #define ADDRMAN_BUCKET_SIZE (1 << ADDRMAN_BUCKET_SIZE_LOG2) //! the maximum number of tried addr collisions to store #define ADDRMAN_SET_TRIED_COLLISION_SIZE 10 //! the maximum time we'll spend trying to resolve a tried table collision, in seconds static const int64_t ADDRMAN_TEST_WINDOW = 40*60; // 40 minutes /** * Stochastical (IP) address manager */ class CAddrMan { public: // Compressed IP->ASN mapping, loaded from a file when a node starts. // Should be always empty if no file was provided. // This mapping is then used for bucketing nodes in Addrman. // // If asmap is provided, nodes will be bucketed by // AS they belong to, in order to make impossible for a node // to connect to several nodes hosted in a single AS. // This is done in response to Erebus attack, but also to generally // diversify the connections every node creates, // especially useful when a large fraction of nodes // operate under a couple of cloud providers. // // If a new asmap was provided, the existing records // would be re-bucketed accordingly. std::vector m_asmap; // Read asmap from provided binary file static std::vector DecodeAsmap(fs::path path); /** * Serialized format. * * format version byte (@see `Format`) * * lowest compatible format version byte. This is used to help old software decide * whether to parse the file. For example: * * Bitcoin Core version N knows how to parse up to format=3. If a new format=4 is * introduced in version N+1 that is compatible with format=3 and it is known that * version N will be able to parse it, then version N+1 will write * (format=4, lowest_compatible=3) in the first two bytes of the file, and so * version N will still try to parse it. * * Bitcoin Core version N+2 introduces a new incompatible format=5. It will write * (format=5, lowest_compatible=5) and so any versions that do not know how to parse * format=5 will not try to read the file. * * nKey * * nNew * * nTried * * number of "new" buckets XOR 2**30 * * all new addresses (total count: nNew) * * all tried addresses (total count: nTried) * * for each new bucket: * * number of elements * * for each element: index in the serialized "all new addresses" * * asmap checksum * * 2**30 is xorred with the number of buckets to make addrman deserializer v0 detect it * as incompatible. This is necessary because it did not check the version number on * deserialization. * * vvNew, vvTried, mapInfo, mapAddr and vRandom are never encoded explicitly; * they are instead reconstructed from the other information. * * This format is more complex, but significantly smaller (at most 1.5 MiB), and supports * changes to the ADDRMAN_ parameters without breaking the on-disk structure. * * We don't use SERIALIZE_METHODS since the serialization and deserialization code has * very little in common. */ template void Serialize(Stream& s_) const EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); // Always serialize in the latest version (FILE_FORMAT). OverrideStream s(&s_, s_.GetType(), s_.GetVersion() | ADDRV2_FORMAT); s << static_cast(FILE_FORMAT); // Increment `lowest_compatible` iff a newly introduced format is incompatible with // the previous one. static constexpr uint8_t lowest_compatible = Format::V3_BIP155; s << static_cast(INCOMPATIBILITY_BASE + lowest_compatible); s << nKey; s << nNew; s << nTried; int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT ^ (1 << 30); s << nUBuckets; std::unordered_map mapUnkIds; int nIds = 0; for (const auto& entry : mapInfo) { mapUnkIds[entry.first] = nIds; const CAddrInfo &info = entry.second; if (info.nRefCount) { assert(nIds != nNew); // this means nNew was wrong, oh ow s << info; nIds++; } } nIds = 0; for (const auto& entry : mapInfo) { const CAddrInfo &info = entry.second; if (info.fInTried) { assert(nIds != nTried); // this means nTried was wrong, oh ow s << info; nIds++; } } for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { int nSize = 0; for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[bucket][i] != -1) nSize++; } s << nSize; for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[bucket][i] != -1) { int nIndex = mapUnkIds[vvNew[bucket][i]]; s << nIndex; } } } // Store asmap checksum after bucket entries so that it // can be ignored by older clients for backward compatibility. uint256 asmap_checksum; if (m_asmap.size() != 0) { asmap_checksum = SerializeHash(m_asmap); } s << asmap_checksum; } template void Unserialize(Stream& s_) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); assert(vRandom.empty()); Format format; s_ >> Using>(format); int stream_version = s_.GetVersion(); if (format >= Format::V3_BIP155) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and CAddress // unserialize methods know that an address in addrv2 format is coming. stream_version |= ADDRV2_FORMAT; } OverrideStream s(&s_, s_.GetType(), stream_version); uint8_t compat; s >> compat; const uint8_t lowest_compatible = compat - INCOMPATIBILITY_BASE; if (lowest_compatible > FILE_FORMAT) { throw std::ios_base::failure(strprintf( "Unsupported format of addrman database: %u. It is compatible with formats >=%u, " "but the maximum supported by this version of %s is %u.", format, lowest_compatible, PACKAGE_NAME, static_cast(FILE_FORMAT))); } s >> nKey; s >> nNew; s >> nTried; int nUBuckets = 0; s >> nUBuckets; if (format >= Format::V1_DETERMINISTIC) { nUBuckets ^= (1 << 30); } if (nNew > ADDRMAN_NEW_BUCKET_COUNT * ADDRMAN_BUCKET_SIZE || nNew < 0) { throw std::ios_base::failure( strprintf("Corrupt CAddrMan serialization: nNew=%d, should be in [0, %u]", nNew, ADDRMAN_NEW_BUCKET_COUNT * ADDRMAN_BUCKET_SIZE)); } if (nTried > ADDRMAN_TRIED_BUCKET_COUNT * ADDRMAN_BUCKET_SIZE || nTried < 0) { throw std::ios_base::failure( strprintf("Corrupt CAddrMan serialization: nTried=%d, should be in [0, %u]", nTried, ADDRMAN_TRIED_BUCKET_COUNT * ADDRMAN_BUCKET_SIZE)); } // Deserialize entries from the new table. for (int n = 0; n < nNew; n++) { CAddrInfo &info = mapInfo[n]; s >> info; mapAddr[info] = n; info.nRandomPos = vRandom.size(); vRandom.push_back(n); } nIdCount = nNew; // Deserialize entries from the tried table. int nLost = 0; for (int n = 0; n < nTried; n++) { CAddrInfo info; s >> info; int nKBucket = info.GetTriedBucket(nKey, m_asmap); int nKBucketPos = info.GetBucketPosition(nKey, false, nKBucket); if (vvTried[nKBucket][nKBucketPos] == -1) { info.nRandomPos = vRandom.size(); info.fInTried = true; vRandom.push_back(nIdCount); mapInfo[nIdCount] = info; mapAddr[info] = nIdCount; vvTried[nKBucket][nKBucketPos] = nIdCount; nIdCount++; } else { nLost++; } } nTried -= nLost; // Store positions in the new table buckets to apply later (if possible). // An entry may appear in up to ADDRMAN_NEW_BUCKETS_PER_ADDRESS buckets, // so we store all bucket-entry_index pairs to iterate through later. std::vector> bucket_entries; for (int bucket = 0; bucket < nUBuckets; ++bucket) { int num_entries{0}; s >> num_entries; for (int n = 0; n < num_entries; ++n) { int entry_index{0}; s >> entry_index; if (entry_index >= 0 && entry_index < nNew) { bucket_entries.emplace_back(bucket, entry_index); } } } // If the bucket count and asmap checksum haven't changed, then attempt // to restore the entries to the buckets/positions they were in before // serialization. uint256 supplied_asmap_checksum; if (m_asmap.size() != 0) { supplied_asmap_checksum = SerializeHash(m_asmap); } uint256 serialized_asmap_checksum; if (format >= Format::V2_ASMAP) { s >> serialized_asmap_checksum; } const bool restore_bucketing{nUBuckets == ADDRMAN_NEW_BUCKET_COUNT && serialized_asmap_checksum == supplied_asmap_checksum}; if (!restore_bucketing) { LogPrint(BCLog::ADDRMAN, "Bucketing method was updated, re-bucketing addrman entries from disk\n"); } for (auto bucket_entry : bucket_entries) { int bucket{bucket_entry.first}; const int entry_index{bucket_entry.second}; CAddrInfo& info = mapInfo[entry_index]; // The entry shouldn't appear in more than // ADDRMAN_NEW_BUCKETS_PER_ADDRESS. If it has already, just skip // this bucket_entry. if (info.nRefCount >= ADDRMAN_NEW_BUCKETS_PER_ADDRESS) continue; int bucket_position = info.GetBucketPosition(nKey, true, bucket); if (restore_bucketing && vvNew[bucket][bucket_position] == -1) { // Bucketing has not changed, using existing bucket positions for the new table vvNew[bucket][bucket_position] = entry_index; ++info.nRefCount; } else { // In case the new table data cannot be used (bucket count wrong or new asmap), // try to give them a reference based on their primary source address. bucket = info.GetNewBucket(nKey, m_asmap); bucket_position = info.GetBucketPosition(nKey, true, bucket); if (vvNew[bucket][bucket_position] == -1) { vvNew[bucket][bucket_position] = entry_index; ++info.nRefCount; } } } // Prune new entries with refcount 0 (as a result of collisions). int nLostUnk = 0; for (auto it = mapInfo.cbegin(); it != mapInfo.cend(); ) { if (it->second.fInTried == false && it->second.nRefCount == 0) { const auto itCopy = it++; Delete(itCopy->first); ++nLostUnk; } else { ++it; } } if (nLost + nLostUnk > 0) { LogPrint(BCLog::ADDRMAN, "addrman lost %i new and %i tried addresses due to collisions\n", nLostUnk, nLost); } RemoveInvalid(); ResetI2PPorts(); Check(); } void Clear() EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); std::vector().swap(vRandom); nKey = insecure_rand.rand256(); for (size_t bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { for (size_t entry = 0; entry < ADDRMAN_BUCKET_SIZE; entry++) { vvNew[bucket][entry] = -1; } } for (size_t bucket = 0; bucket < ADDRMAN_TRIED_BUCKET_COUNT; bucket++) { for (size_t entry = 0; entry < ADDRMAN_BUCKET_SIZE; entry++) { vvTried[bucket][entry] = -1; } } nIdCount = 0; nTried = 0; nNew = 0; nLastGood = 1; //Initially at 1 so that "never" is strictly worse. mapInfo.clear(); mapAddr.clear(); } CAddrMan() { Clear(); } ~CAddrMan() { nKey.SetNull(); } //! Return the number of (unique) addresses in all tables. size_t size() const EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); // TODO: Cache this in an atomic to avoid this overhead return vRandom.size(); } //! Add a single address. bool Add(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty = 0) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); bool fRet = false; Check(); fRet |= Add_(addr, source, nTimePenalty); Check(); if (fRet) { LogPrint(BCLog::ADDRMAN, "Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort(), source.ToString(), nTried, nNew); } return fRet; } //! Add multiple addresses. bool Add(const std::vector &vAddr, const CNetAddr& source, int64_t nTimePenalty = 0) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); int nAdd = 0; Check(); for (std::vector::const_iterator it = vAddr.begin(); it != vAddr.end(); it++) nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0; Check(); if (nAdd) { LogPrint(BCLog::ADDRMAN, "Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString(), nTried, nNew); } return nAdd > 0; } //! Mark an entry as accessible. void Good(const CService &addr, bool test_before_evict = true, int64_t nTime = GetAdjustedTime()) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); Good_(addr, test_before_evict, nTime); Check(); } //! Mark an entry as connection attempted to. void Attempt(const CService &addr, bool fCountFailure, int64_t nTime = GetAdjustedTime()) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); Attempt_(addr, fCountFailure, nTime); Check(); } //! See if any to-be-evicted tried table entries have been tested and if so resolve the collisions. void ResolveCollisions() EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); ResolveCollisions_(); Check(); } //! Randomly select an address in tried that another address is attempting to evict. CAddrInfo SelectTriedCollision() EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); const CAddrInfo ret = SelectTriedCollision_(); Check(); return ret; } /** * Choose an address to connect to. */ CAddrInfo Select(bool newOnly = false) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); const CAddrInfo addrRet = Select_(newOnly); Check(); return addrRet; } /** * Return all or many randomly selected addresses, optionally by network. * * @param[in] max_addresses Maximum number of addresses to return (0 = all). * @param[in] max_pct Maximum percentage of addresses to return (0 = all). * @param[in] network Select only addresses of this network (nullopt = all). */ std::vector GetAddr(size_t max_addresses, size_t max_pct, std::optional network) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); std::vector vAddr; GetAddr_(vAddr, max_addresses, max_pct, network); Check(); return vAddr; } //! Outer function for Connected_() void Connected(const CService &addr, int64_t nTime = GetAdjustedTime()) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); Connected_(addr, nTime); Check(); } void SetServices(const CService &addr, ServiceFlags nServices) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); Check(); SetServices_(addr, nServices); Check(); } protected: //! secret key to randomize bucket select with uint256 nKey; //! Source of random numbers for randomization in inner loops FastRandomContext insecure_rand; private: //! A mutex to protect the inner data structures. mutable Mutex cs; //! Serialization versions. enum Format : uint8_t { V0_HISTORICAL = 0, //!< historic format, before commit e6b343d88 V1_DETERMINISTIC = 1, //!< for pre-asmap files V2_ASMAP = 2, //!< for files including asmap version V3_BIP155 = 3, //!< same as V2_ASMAP plus addresses are in BIP155 format }; //! The maximum format this software knows it can unserialize. Also, we always serialize //! in this format. //! The format (first byte in the serialized stream) can be higher than this and //! still this software may be able to unserialize the file - if the second byte //! (see `lowest_compatible` in `Unserialize()`) is less or equal to this. static constexpr Format FILE_FORMAT = Format::V3_BIP155; //! The initial value of a field that is incremented every time an incompatible format //! change is made (such that old software versions would not be able to parse and //! understand the new file format). This is 32 because we overtook the "key size" //! field which was 32 historically. //! @note Don't increment this. Increment `lowest_compatible` in `Serialize()` instead. static constexpr uint8_t INCOMPATIBILITY_BASE = 32; //! last used nId int nIdCount GUARDED_BY(cs); //! table with information about all nIds std::unordered_map mapInfo GUARDED_BY(cs); //! find an nId based on its network address std::unordered_map mapAddr GUARDED_BY(cs); //! randomly-ordered vector of all nIds std::vector vRandom GUARDED_BY(cs); // number of "tried" entries int nTried GUARDED_BY(cs); //! list of "tried" buckets int vvTried[ADDRMAN_TRIED_BUCKET_COUNT][ADDRMAN_BUCKET_SIZE] GUARDED_BY(cs); //! number of (unique) "new" entries int nNew GUARDED_BY(cs); //! list of "new" buckets int vvNew[ADDRMAN_NEW_BUCKET_COUNT][ADDRMAN_BUCKET_SIZE] GUARDED_BY(cs); //! last time Good was called (memory only) int64_t nLastGood GUARDED_BY(cs); //! Holds addrs inserted into tried table that collide with existing entries. Test-before-evict discipline used to resolve these collisions. std::set m_tried_collisions; //! Find an entry. CAddrInfo* Find(const CNetAddr& addr, int *pnId = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs); //! find an entry, creating it if necessary. //! nTime and nServices of the found node are updated, if necessary. CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Swap two elements in vRandom. void SwapRandom(unsigned int nRandomPos1, unsigned int nRandomPos2) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Move an entry from the "new" table(s) to the "tried" table void MakeTried(CAddrInfo& info, int nId) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Delete an entry. It must not be in tried, and have refcount 0. void Delete(int nId) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Clear a position in a "new" table. This is the only place where entries are actually deleted. void ClearNew(int nUBucket, int nUBucketPos) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Mark an entry "good", possibly moving it from "new" to "tried". void Good_(const CService &addr, bool test_before_evict, int64_t time) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Add an entry to the "new" table. bool Add_(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Mark an entry as attempted to connect. void Attempt_(const CService &addr, bool fCountFailure, int64_t nTime) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Select an address to connect to, if newOnly is set to true, only the new table is selected from. CAddrInfo Select_(bool newOnly) EXCLUSIVE_LOCKS_REQUIRED(cs); //! See if any to-be-evicted tried table entries have been tested and if so resolve the collisions. void ResolveCollisions_() EXCLUSIVE_LOCKS_REQUIRED(cs); //! Return a random to-be-evicted tried table address. CAddrInfo SelectTriedCollision_() EXCLUSIVE_LOCKS_REQUIRED(cs); //! Consistency check void Check() EXCLUSIVE_LOCKS_REQUIRED(cs) { #ifdef DEBUG_ADDRMAN AssertLockHeld(cs); const int err = Check_(); if (err) { LogPrintf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err); } #endif } #ifdef DEBUG_ADDRMAN //! Perform consistency check. Returns an error code or zero. int Check_() EXCLUSIVE_LOCKS_REQUIRED(cs); #endif /** * Return all or many randomly selected addresses, optionally by network. * * @param[out] vAddr Vector of randomly selected addresses from vRandom. * @param[in] max_addresses Maximum number of addresses to return (0 = all). * @param[in] max_pct Maximum percentage of addresses to return (0 = all). * @param[in] network Select only addresses of this network (nullopt = all). */ void GetAddr_(std::vector& vAddr, size_t max_addresses, size_t max_pct, std::optional network) EXCLUSIVE_LOCKS_REQUIRED(cs); /** We have successfully connected to this peer. Calling this function * updates the CAddress's nTime, which is used in our IsTerrible() * decisions and gossiped to peers. Callers should be careful that updating * this information doesn't leak topology information to network spies. * * net_processing calls this function when it *disconnects* from a peer to * not leak information about currently connected peers. * * @param[in] addr The address of the peer we were connected to * @param[in] nTime The time that we were last connected to this peer */ void Connected_(const CService& addr, int64_t nTime) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Update an entry's service bits. void SetServices_(const CService &addr, ServiceFlags nServices) EXCLUSIVE_LOCKS_REQUIRED(cs); //! Remove invalid addresses. void RemoveInvalid() EXCLUSIVE_LOCKS_REQUIRED(cs); /** * Reset the ports of I2P peers to 0. * This is needed as a temporary measure because now we enforce port 0 and * only connect to I2P hosts if the port is 0, but in the early days some * I2P addresses with port 8333 were rumoured and persisted into addrmans. */ void ResetI2PPorts() EXCLUSIVE_LOCKS_REQUIRED(cs); friend class CAddrManTest; }; #endif // BITCOIN_ADDRMAN_H