#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import argparse import base64 import json import logging import math import os.path import re import struct import sys import time import subprocess from binascii import unhexlify from io import BytesIO PATH_BASE_CONTRIB_SIGNET = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) PATH_BASE_TEST_FUNCTIONAL = os.path.abspath(os.path.join(PATH_BASE_CONTRIB_SIGNET, "..", "..", "test", "functional")) sys.path.insert(0, PATH_BASE_TEST_FUNCTIONAL) from test_framework.blocktools import WITNESS_COMMITMENT_HEADER, script_BIP34_coinbase_height # noqa: E402 from test_framework.messages import CBlock, CBlockHeader, COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, FromHex, deser_string, hash256, ser_compact_size, ser_string, ser_uint256, tx_from_hex, uint256_from_str # noqa: E402 from test_framework.script import CScriptOp # noqa: E402 logging.basicConfig( format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') SIGNET_HEADER = b"\xec\xc7\xda\xa2" PSBT_SIGNET_BLOCK = b"\xfc\x06signetb" # proprietary PSBT global field holding the block being signed RE_MULTIMINER = re.compile("^(\d+)(-(\d+))?/(\d+)$") # #### some helpers that could go into test_framework # like FromHex, but without the hex part def FromBinary(cls, stream): """deserialize a binary stream (or bytes object) into an object""" # handle bytes object by turning it into a stream was_bytes = isinstance(stream, bytes) if was_bytes: stream = BytesIO(stream) obj = cls() obj.deserialize(stream) if was_bytes: assert len(stream.read()) == 0 return obj class PSBTMap: """Class for serializing and deserializing PSBT maps""" def __init__(self, map=None): self.map = map if map is not None else {} def deserialize(self, f): m = {} while True: k = deser_string(f) if len(k) == 0: break v = deser_string(f) if len(k) == 1: k = k[0] assert k not in m m[k] = v self.map = m def serialize(self): m = b"" for k,v in self.map.items(): if isinstance(k, int) and 0 <= k and k <= 255: k = bytes([k]) m += ser_compact_size(len(k)) + k m += ser_compact_size(len(v)) + v m += b"\x00" return m class PSBT: """Class for serializing and deserializing PSBTs""" def __init__(self): self.g = PSBTMap() self.i = [] self.o = [] self.tx = None def deserialize(self, f): assert f.read(5) == b"psbt\xff" self.g = FromBinary(PSBTMap, f) assert 0 in self.g.map self.tx = FromBinary(CTransaction, self.g.map[0]) self.i = [FromBinary(PSBTMap, f) for _ in self.tx.vin] self.o = [FromBinary(PSBTMap, f) for _ in self.tx.vout] return self def serialize(self): assert isinstance(self.g, PSBTMap) assert isinstance(self.i, list) and all(isinstance(x, PSBTMap) for x in self.i) assert isinstance(self.o, list) and all(isinstance(x, PSBTMap) for x in self.o) assert 0 in self.g.map tx = FromBinary(CTransaction, self.g.map[0]) assert len(tx.vin) == len(self.i) assert len(tx.vout) == len(self.o) psbt = [x.serialize() for x in [self.g] + self.i + self.o] return b"psbt\xff" + b"".join(psbt) def to_base64(self): return base64.b64encode(self.serialize()).decode("utf8") @classmethod def from_base64(cls, b64psbt): return FromBinary(cls, base64.b64decode(b64psbt)) # ##### def create_coinbase(height, value, spk): cb = CTransaction() cb.vin = [CTxIn(COutPoint(0, 0xffffffff), script_BIP34_coinbase_height(height), 0xffffffff)] cb.vout = [CTxOut(value, spk)] return cb def get_witness_script(witness_root, witness_nonce): commitment = uint256_from_str(hash256(ser_uint256(witness_root) + ser_uint256(witness_nonce))) return b"\x6a" + CScriptOp.encode_op_pushdata(WITNESS_COMMITMENT_HEADER + ser_uint256(commitment)) def signet_txs(block, challenge): # assumes signet solution has not been added yet so does not need # to be removed txs = block.vtx[:] txs[0] = CTransaction(txs[0]) txs[0].vout[-1].scriptPubKey += CScriptOp.encode_op_pushdata(SIGNET_HEADER) hashes = [] for tx in txs: tx.rehash() hashes.append(ser_uint256(tx.sha256)) mroot = block.get_merkle_root(hashes) sd = b"" sd += struct.pack("> 24) & 0xff return (nbits & 0x00ffffff) * 2**(8*(shift - 3)) def target_to_nbits(target): tstr = "{0:x}".format(target) if len(tstr) < 6: tstr = ("000000"+tstr)[-6:] if len(tstr) % 2 != 0: tstr = "0" + tstr if int(tstr[0],16) >= 0x8: # avoid "negative" tstr = "00" + tstr fix = int(tstr[:6], 16) sz = len(tstr)//2 if tstr[6:] != "0"*(sz*2-6): fix += 1 return int("%02x%06x" % (sz,fix), 16) def seconds_to_hms(s): if s == 0: return "0s" neg = (s < 0) if neg: s = -s out = "" if s % 60 > 0: out = "%ds" % (s % 60) s //= 60 if s % 60 > 0: out = "%dm%s" % (s % 60, out) s //= 60 if s > 0: out = "%dh%s" % (s, out) if neg: out = "-" + out return out def next_block_delta(last_nbits, last_hash, ultimate_target, do_poisson): # strategy: # 1) work out how far off our desired target we are # 2) cap it to a factor of 4 since that's the best we can do in a single retarget period # 3) use that to work out the desired average interval in this retarget period # 4) if doing poisson, use the last hash to pick a uniformly random number in [0,1), and work out a random multiplier to vary the average by # 5) cap the resulting interval between 1 second and 1 hour to avoid extremes INTERVAL = 600.0*2016/2015 # 10 minutes, adjusted for the off-by-one bug current_target = nbits_to_target(last_nbits) retarget_factor = ultimate_target / current_target retarget_factor = max(0.25, min(retarget_factor, 4.0)) avg_interval = INTERVAL * retarget_factor if do_poisson: det_rand = int(last_hash[-8:], 16) * 2**-32 this_interval_variance = -math.log1p(-det_rand) else: this_interval_variance = 1 this_interval = avg_interval * this_interval_variance this_interval = max(1, min(this_interval, 3600)) return this_interval def next_block_is_mine(last_hash, my_blocks): det_rand = int(last_hash[-16:-8], 16) return my_blocks[0] <= (det_rand % my_blocks[2]) < my_blocks[1] def do_generate(args): if args.max_blocks is not None: if args.ongoing: logging.error("Cannot specify both --ongoing and --max-blocks") return 1 if args.max_blocks < 1: logging.error("N must be a positive integer") return 1 max_blocks = args.max_blocks elif args.ongoing: max_blocks = None else: max_blocks = 1 if args.set_block_time is not None and max_blocks != 1: logging.error("Cannot specify --ongoing or --max-blocks > 1 when using --set-block-time") return 1 if args.set_block_time is not None and args.set_block_time < 0: args.set_block_time = time.time() logging.info("Treating negative block time as current time (%d)" % (args.set_block_time)) if args.min_nbits: if args.nbits is not None: logging.error("Cannot specify --nbits and --min-nbits") return 1 args.nbits = "1e0377ae" logging.info("Using nbits=%s" % (args.nbits)) if args.set_block_time is None: if args.nbits is None or len(args.nbits) != 8: logging.error("Must specify --nbits (use calibrate command to determine value)") return 1 if args.multiminer is None: my_blocks = (0,1,1) else: if not args.ongoing: logging.error("Cannot specify --multiminer without --ongoing") return 1 m = RE_MULTIMINER.match(args.multiminer) if m is None: logging.error("--multiminer argument must be k/m or j-k/m") return 1 start,_,stop,total = m.groups() if stop is None: stop = start start, stop, total = map(int, (start, stop, total)) if stop < start or start <= 0 or total < stop or total == 0: logging.error("Inconsistent values for --multiminer") return 1 my_blocks = (start-1, stop, total) ultimate_target = nbits_to_target(int(args.nbits,16)) mined_blocks = 0 bestheader = {"hash": None} lastheader = None while max_blocks is None or mined_blocks < max_blocks: # current status? bci = json.loads(args.bcli("getblockchaininfo")) if bestheader["hash"] != bci["bestblockhash"]: bestheader = json.loads(args.bcli("getblockheader", bci["bestblockhash"])) if lastheader is None: lastheader = bestheader["hash"] elif bestheader["hash"] != lastheader: next_delta = next_block_delta(int(bestheader["bits"], 16), bestheader["hash"], ultimate_target, args.poisson) next_delta += bestheader["time"] - time.time() next_is_mine = next_block_is_mine(bestheader["hash"], my_blocks) logging.info("Received new block at height %d; next in %s (%s)", bestheader["height"], seconds_to_hms(next_delta), ("mine" if next_is_mine else "backup")) lastheader = bestheader["hash"] # when is the next block due to be mined? now = time.time() if args.set_block_time is not None: logging.debug("Setting start time to %d", args.set_block_time) mine_time = args.set_block_time action_time = now is_mine = True elif bestheader["height"] == 0: time_delta = next_block_delta(int(bestheader["bits"], 16), bci["bestblockhash"], ultimate_target, args.poisson) time_delta *= 100 # 100 blocks logging.info("Backdating time for first block to %d minutes ago" % (time_delta/60)) mine_time = now - time_delta action_time = now is_mine = True else: time_delta = next_block_delta(int(bestheader["bits"], 16), bci["bestblockhash"], ultimate_target, args.poisson) mine_time = bestheader["time"] + time_delta is_mine = next_block_is_mine(bci["bestblockhash"], my_blocks) action_time = mine_time if not is_mine: action_time += args.backup_delay if args.standby_delay > 0: action_time += args.standby_delay elif mined_blocks == 0: # for non-standby, always mine immediately on startup, # even if the next block shouldn't be ours action_time = now # don't want fractional times so round down mine_time = int(mine_time) action_time = int(action_time) # can't mine a block 2h in the future; 1h55m for some safety action_time = max(action_time, mine_time - 6900) # ready to go? otherwise sleep and check for new block if now < action_time: sleep_for = min(action_time - now, 60) if mine_time < now: # someone else might have mined the block, # so check frequently, so we don't end up late # mining the next block if it's ours sleep_for = min(20, sleep_for) minestr = "mine" if is_mine else "backup" logging.debug("Sleeping for %s, next block due in %s (%s)" % (seconds_to_hms(sleep_for), seconds_to_hms(mine_time - now), minestr)) time.sleep(sleep_for) continue # gbt tmpl = json.loads(args.bcli("getblocktemplate", '{"rules":["signet","segwit"]}')) if tmpl["previousblockhash"] != bci["bestblockhash"]: logging.warning("GBT based off unexpected block (%s not %s), retrying", tmpl["previousblockhash"], bci["bestblockhash"]) time.sleep(1) continue logging.debug("GBT template: %s", tmpl) if tmpl["mintime"] > mine_time: logging.info("Updating block time from %d to %d", mine_time, tmpl["mintime"]) mine_time = tmpl["mintime"] if mine_time > now: logging.error("GBT mintime is in the future: %d is %d seconds later than %d", mine_time, (mine_time-now), now) return 1 # address for reward reward_addr, reward_spk = get_reward_addr_spk(args, tmpl["height"]) # mine block logging.debug("Mining block delta=%s start=%s mine=%s", seconds_to_hms(mine_time-bestheader["time"]), mine_time, is_mine) mined_blocks += 1 psbt = generate_psbt(tmpl, reward_spk, blocktime=mine_time) psbt_signed = json.loads(args.bcli("-stdin", "walletprocesspsbt", input=psbt.encode('utf8'))) if not psbt_signed.get("complete",False): logging.debug("Generated PSBT: %s" % (psbt,)) sys.stderr.write("PSBT signing failed") return 1 block, signet_solution = do_decode_psbt(psbt_signed["psbt"]) block = finish_block(block, signet_solution, args.grind_cmd) # submit block r = args.bcli("-stdin", "submitblock", input=block.serialize().hex().encode('utf8')) # report bstr = "block" if is_mine else "backup block" next_delta = next_block_delta(block.nBits, block.hash, ultimate_target, args.poisson) next_delta += block.nTime - time.time() next_is_mine = next_block_is_mine(block.hash, my_blocks) logging.debug("Block hash %s payout to %s", block.hash, reward_addr) logging.info("Mined %s at height %d; next in %s (%s)", bstr, tmpl["height"], seconds_to_hms(next_delta), ("mine" if next_is_mine else "backup")) if r != "": logging.warning("submitblock returned %s for height %d hash %s", r, tmpl["height"], block.hash) lastheader = block.hash def do_calibrate(args): if args.nbits is not None and args.seconds is not None: sys.stderr.write("Can only specify one of --nbits or --seconds\n") return 1 if args.nbits is not None and len(args.nbits) != 8: sys.stderr.write("Must specify 8 hex digits for --nbits\n") return 1 TRIALS = 600 # gets variance down pretty low TRIAL_BITS = 0x1e3ea75f # takes about 5m to do 600 trials header = CBlockHeader() header.nBits = TRIAL_BITS targ = nbits_to_target(header.nBits) start = time.time() count = 0 for i in range(TRIALS): header.nTime = i header.nNonce = 0 headhex = header.serialize().hex() cmd = args.grind_cmd.split(" ") + [headhex] newheadhex = subprocess.run(cmd, stdout=subprocess.PIPE, input=b"", check=True).stdout.strip() avg = (time.time() - start) * 1.0 / TRIALS if args.nbits is not None: want_targ = nbits_to_target(int(args.nbits,16)) want_time = avg*targ/want_targ else: want_time = args.seconds if args.seconds is not None else 25 want_targ = int(targ*(avg/want_time)) print("nbits=%08x for %ds average mining time" % (target_to_nbits(want_targ), want_time)) return 0 def bitcoin_cli(basecmd, args, **kwargs): cmd = basecmd + ["-signet"] + args logging.debug("Calling bitcoin-cli: %r", cmd) out = subprocess.run(cmd, stdout=subprocess.PIPE, **kwargs, check=True).stdout if isinstance(out, bytes): out = out.decode('utf8') return out.strip() def main(): parser = argparse.ArgumentParser() parser.add_argument("--cli", default="bitcoin-cli", type=str, help="bitcoin-cli command") parser.add_argument("--debug", action="store_true", help="Print debugging info") parser.add_argument("--quiet", action="store_true", help="Only print warnings/errors") cmds = parser.add_subparsers(help="sub-commands") genpsbt = cmds.add_parser("genpsbt", help="Generate a block PSBT for signing") genpsbt.set_defaults(fn=do_genpsbt) solvepsbt = cmds.add_parser("solvepsbt", help="Solve a signed block PSBT") solvepsbt.set_defaults(fn=do_solvepsbt) generate = cmds.add_parser("generate", help="Mine blocks") generate.set_defaults(fn=do_generate) generate.add_argument("--ongoing", action="store_true", help="Keep mining blocks") generate.add_argument("--max-blocks", default=None, type=int, help="Max blocks to mine (default=1)") generate.add_argument("--set-block-time", default=None, type=int, help="Set block time (unix timestamp)") generate.add_argument("--nbits", default=None, type=str, help="Target nBits (specify difficulty)") generate.add_argument("--min-nbits", action="store_true", help="Target minimum nBits (use min difficulty)") generate.add_argument("--poisson", action="store_true", help="Simulate randomised block times") generate.add_argument("--multiminer", default=None, type=str, help="Specify which set of blocks to mine (eg: 1-40/100 for the first 40%%, 2/3 for the second 3rd)") generate.add_argument("--backup-delay", default=300, type=int, help="Seconds to delay before mining blocks reserved for other miners (default=300)") generate.add_argument("--standby-delay", default=0, type=int, help="Seconds to delay before mining blocks (default=0)") calibrate = cmds.add_parser("calibrate", help="Calibrate difficulty") calibrate.set_defaults(fn=do_calibrate) calibrate.add_argument("--nbits", type=str, default=None) calibrate.add_argument("--seconds", type=int, default=None) for sp in [genpsbt, generate]: sp.add_argument("--address", default=None, type=str, help="Address for block reward payment") sp.add_argument("--descriptor", default=None, type=str, help="Descriptor for block reward payment") for sp in [solvepsbt, generate, calibrate]: sp.add_argument("--grind-cmd", default=None, type=str, required=(sp==calibrate), help="Command to grind a block header for proof-of-work") args = parser.parse_args(sys.argv[1:]) args.bcli = lambda *a, input=b"", **kwargs: bitcoin_cli(args.cli.split(" "), list(a), input=input, **kwargs) if hasattr(args, "address") and hasattr(args, "descriptor"): if args.address is None and args.descriptor is None: sys.stderr.write("Must specify --address or --descriptor\n") return 1 elif args.address is not None and args.descriptor is not None: sys.stderr.write("Only specify one of --address or --descriptor\n") return 1 args.derived_addresses = {} if args.debug: logging.getLogger().setLevel(logging.DEBUG) elif args.quiet: logging.getLogger().setLevel(logging.WARNING) else: logging.getLogger().setLevel(logging.INFO) if hasattr(args, "fn"): return args.fn(args) else: logging.error("Must specify command") return 1 if __name__ == "__main__": main()