import sys from reference import * def is_square(x): return int(pow(x, (p - 1) // 2, p)) == 1 def has_square_y(P): """Determine if P has a square Y coordinate. Used in an earlier draft of BIP340.""" assert not is_infinite(P) return is_square(P[1]) def vector0(): seckey = bytes_from_int(3) msg = bytes_from_int(0) aux_rand = bytes_from_int(0) sig = schnorr_sign(msg, seckey, aux_rand) pubkey = pubkey_gen(seckey) # We should have at least one test vector where the seckey needs to be # negated and one where it doesn't. In this one the seckey doesn't need to # be negated. x = int_from_bytes(seckey) P = point_mul(G, x) assert(y(P) % 2 == 0) # For historical reasons (pubkey tiebreaker was squareness and not evenness) # we should have at least one test vector where the point reconstructed # from the public key has a square and one where it has a non-square Y # coordinate. In this one Y is non-square. pubkey_point = lift_x(int_from_bytes(pubkey)) assert(not has_square_y(pubkey_point)) # For historical reasons (R tiebreaker was squareness and not evenness) # we should have at least one test vector where the point reconstructed # from the R.x coordinate has a square and one where it has a non-square Y # coordinate. In this one Y is non-square. R = lift_x(int_from_bytes(sig[0:32])) assert(not has_square_y(R)) return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None) def vector1(): seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF) msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89) aux_rand = bytes_from_int(1) sig = schnorr_sign(msg, seckey, aux_rand) # The point reconstructed from the R.x coordinate has a square Y coordinate. R = lift_x(int_from_bytes(sig[0:32])) assert(has_square_y(R)) return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None) def vector2(): seckey = bytes_from_int(0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9) msg = bytes_from_int(0x7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C) aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906) sig = schnorr_sign(msg, seckey, aux_rand) # The point reconstructed from the public key has a square Y coordinate. pubkey = pubkey_gen(seckey) pubkey_point = lift_x(int_from_bytes(pubkey)) assert(has_square_y(pubkey_point)) # This signature vector would not verify if the implementer checked the # evenness of the X coordinate of R instead of the Y coordinate. R = lift_x(int_from_bytes(sig[0:32])) assert(R[0] % 2 == 1) return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None) def vector3(): seckey = bytes_from_int(0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710) # Need to negate this seckey before signing x = int_from_bytes(seckey) P = point_mul(G, x) assert(y(P) % 2 != 0) msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) aux_rand = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) sig = schnorr_sign(msg, seckey, aux_rand) return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", "test fails if msg is reduced modulo p or n") # Signs with a given nonce. This can be INSECURE and is only INTENDED FOR # GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not # even. def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k): if len(msg) != 32: raise ValueError('The message must be a 32-byte array.') seckey0 = int_from_bytes(seckey0) if not (1 <= seckey0 <= n - 1): raise ValueError('The secret key must be an integer in the range 1..n-1.') P = point_mul(G, seckey0) seckey = seckey0 if has_even_y(P) else n - seckey0 R = point_mul(G, k) e = int_from_bytes(tagged_hash("BIP0340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n) # Creates a signature with a small x(R) by using k = -1/2 def vector4(): one_half = n - 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0 seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB) msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703) sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half) return (None, pubkey_gen(seckey), None, msg, sig, "TRUE", None) default_seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF) default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89) default_aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906) # Public key is not on the curve def vector5(): # This creates a dummy signature that doesn't have anything to do with the # public key. seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) pubkey_int = 0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 pubkey = bytes_from_int(pubkey_int) assert(lift_x(pubkey_int) is None) return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve") def vector6(): seckey = default_seckey msg = default_msg k = 6 sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k) # Y coordinate of R is not even R = point_mul(G, k) assert(not has_even_y(R)) return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_even_y(R) is false") def vector7(): seckey = default_seckey msg = int_from_bytes(default_msg) neg_msg = bytes_from_int(n - msg) sig = schnorr_sign(neg_msg, seckey, default_aux_rand) return (None, pubkey_gen(seckey), None, bytes_from_int(msg), sig, "FALSE", "negated message") def vector8(): seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64])) return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "negated s value") def bytes_from_point_inf0(P): if P == None: return bytes_from_int(0) return bytes_from_int(P[0]) def vector9(): seckey = default_seckey msg = default_msg # Override bytes_from_point in schnorr_sign to allow creating a signature # with k = 0. k = 0 bytes_from_point_tmp = bytes_from_point.__code__ bytes_from_point.__code__ = bytes_from_point_inf0.__code__ sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k) bytes_from_point.__code__ = bytes_from_point_tmp return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 0") def bytes_from_point_inf1(P): if P == None: return bytes_from_int(1) return bytes_from_int(P[0]) def vector10(): seckey = default_seckey msg = default_msg # Override bytes_from_point in schnorr_sign to allow creating a signature # with k = 0. k = 0 bytes_from_point_tmp = bytes_from_point.__code__ bytes_from_point.__code__ = bytes_from_point_inf1.__code__ sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k) bytes_from_point.__code__ = bytes_from_point_tmp return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 1") # It's cryptographically impossible to create a test vector that fails if run # in an implementation which merely misses the check that sig[0:32] is an X # coordinate on the curve. This test vector just increases test coverage. def vector11(): seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) # Replace R's X coordinate with an X coordinate that's not on the curve x_not_on_curve = 0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D assert(lift_x(x_not_on_curve) is None) sig = bytes_from_int(x_not_on_curve) + sig[32:64] return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve") # It's cryptographically impossible to create a test vector that fails if run # in an implementation which merely misses the check that sig[0:32] is smaller # than the field size. This test vector just increases test coverage. def vector12(): seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) # Replace R's X coordinate with an X coordinate that's equal to field size sig = bytes_from_int(p) + sig[32:64] return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is equal to field size") # It's cryptographically impossible to create a test vector that fails if run # in an implementation which merely misses the check that sig[32:64] is smaller # than the curve order. This test vector just increases test coverage. def vector13(): seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) # Replace s with a number that's equal to the curve order sig = sig[0:32] + bytes_from_int(n) return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[32:64] is equal to curve order") # Test out of range pubkey # It's cryptographically impossible to create a test vector that fails if run # in an implementation which accepts out of range pubkeys because we can't find # a secret key for such a public key and therefore can not create a signature. # This test vector just increases test coverage. def vector14(): # This creates a dummy signature that doesn't have anything to do with the # public key. seckey = default_seckey msg = default_msg sig = schnorr_sign(msg, seckey, default_aux_rand) pubkey_int = p + 1 pubkey = bytes_from_int(pubkey_int) assert(lift_x(pubkey_int) is None) # If an implementation would reduce a given public key modulo p then the # pubkey would be valid assert(lift_x(pubkey_int % p) is not None) return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size") def varlen_vector(msg_int): seckey = bytes_from_int(int(16 * "0340", 16)) pubkey = pubkey_gen(seckey) aux_rand = bytes_from_int(0) msg = msg_int.to_bytes((msg_int.bit_length() + 7) // 8, "big") sig = schnorr_sign(msg, seckey, aux_rand) comment = "message of size %d (added 2022-12)" return (seckey, pubkey, aux_rand, msg, sig, "TRUE", comment % len(msg)) vector15 = lambda : varlen_vector(0) vector16 = lambda : varlen_vector(0x11) vector17 = lambda : varlen_vector(0x0102030405060708090A0B0C0D0E0F1011) vector18 = lambda : varlen_vector(int(100 * "99", 16)) vectors = [ vector0(), vector1(), vector2(), vector3(), vector4(), vector5(), vector6(), vector7(), vector8(), vector9(), vector10(), vector11(), vector12(), vector13(), vector14(), vector15(), vector16(), vector17(), vector18(), ] # Converts the byte strings of a test vector into hex strings def bytes_to_hex(seckey, pubkey, aux_rand, msg, sig, result, comment): return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), aux_rand.hex().upper() if aux_rand is not None else None, msg.hex().upper(), sig.hex().upper(), result, comment) vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5], vector[6]), vectors)) def print_csv(vectors): writer = csv.writer(sys.stdout) writer.writerow(("index", "secret key", "public key", "aux_rand", "message", "signature", "verification result", "comment")) for (i,v) in enumerate(vectors): writer.writerow((i,)+v) print_csv(vectors)