import hashlib import binascii # Set DEBUG to True to get a detailed debug output including # intermediate values during key generation, signing, and # verification. This is implemented via calls to the # debug_print_vars() function. # # If you want to print values on an individual basis, use # the pretty() function, e.g., print(pretty(foo)). DEBUG = False p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # Points are tuples of X and Y coordinates and the point at infinity is # represented by the None keyword. G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8) # This implementation can be sped up by storing the midstate after hashing # tag_hash instead of rehashing it all the time. def tagged_hash(tag, msg): tag_hash = hashlib.sha256(tag.encode()).digest() return hashlib.sha256(tag_hash + tag_hash + msg).digest() def is_infinity(P): return P is None def x(P): return P[0] def y(P): return P[1] def point_add(P1, P2): if P1 is None: return P2 if P2 is None: return P1 if (x(P1) == x(P2)) and (y(P1) != y(P2)): return None if P1 == P2: lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p else: lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p x3 = (lam * lam - x(P1) - x(P2)) % p return (x3, (lam * (x(P1) - x3) - y(P1)) % p) def point_mul(P, n): R = None for i in range(256): if (n >> i) & 1: R = point_add(R, P) P = point_add(P, P) return R def bytes_from_int(x): return x.to_bytes(32, byteorder="big") def bytes_from_point(P): return bytes_from_int(x(P)) def xor_bytes(b0, b1): return bytes(x ^ y for (x, y) in zip(b0, b1)) def lift_x_square_y(b): x = int_from_bytes(b) if x >= p: return None y_sq = (pow(x, 3, p) + 7) % p y = pow(y_sq, (p + 1) // 4, p) if pow(y, 2, p) != y_sq: return None return (x, y) def lift_x_even_y(b): P = lift_x_square_y(b) if P is None: return None else: return [x(P), y(P) if y(P) % 2 == 0 else p - y(P)] def int_from_bytes(b): return int.from_bytes(b, byteorder="big") def hash_sha256(b): return hashlib.sha256(b).digest() def is_square(x): return pow(x, (p - 1) // 2, p) == 1 def has_square_y(P): return (not is_infinity(P)) and (is_square(y(P))) def has_even_y(P): return y(P) % 2 == 0 def pubkey_gen(seckey): d0 = int_from_bytes(seckey) if not (1 <= d0 <= n - 1): debug_print_vars() raise ValueError('The secret key must be an integer in the range 1..n-1.') P = point_mul(G, d0) return bytes_from_point(P) def schnorr_sign(msg, seckey, aux_rand): if len(msg) != 32: debug_print_vars() raise ValueError('The message must be a 32-byte array.') d0 = int_from_bytes(seckey) if not (1 <= d0 <= n - 1): raise ValueError('The secret key must be an integer in the range 1..n-1.') if len(aux_rand) != 32: raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand)) P = point_mul(G, d0) d = d0 if has_even_y(P) else n - d0 t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand)) k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n if k0 == 0: debug_print_vars() raise RuntimeError('Failure. This happens only with negligible probability.') R = point_mul(G, k0) k = n - k0 if not has_square_y(R) else k0 e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n) if not schnorr_verify(msg, bytes_from_point(P), sig): debug_print_vars() raise RuntimeError('The signature does not pass verification.') debug_print_vars() return sig def schnorr_verify(msg, pubkey, sig): if len(msg) != 32: raise ValueError('The message must be a 32-byte array.') if len(pubkey) != 32: raise ValueError('The public key must be a 32-byte array.') if len(sig) != 64: raise ValueError('The signature must be a 64-byte array.') P = lift_x_even_y(pubkey) r = int_from_bytes(sig[0:32]) s = int_from_bytes(sig[32:64]) if (P is None) or (r >= p) or (s >= n): debug_print_vars() return False e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n R = point_add(point_mul(G, s), point_mul(P, n - e)) if (R is None) or (not has_square_y(R)) or (x(R) != r): debug_print_vars() return False debug_print_vars() return True # # The following code is only used to verify the test vectors. # import csv import os import sys def test_vectors(): all_passed = True with open(os.path.join(sys.path[0], 'test-vectors.csv'), newline='') as csvfile: reader = csv.reader(csvfile) reader.__next__() for row in reader: (index, seckey, pubkey, aux_rand, msg, sig, result, comment) = row pubkey = bytes.fromhex(pubkey) msg = bytes.fromhex(msg) sig = bytes.fromhex(sig) result = result == 'TRUE' print('\nTest vector', ('#' + index).rjust(3, ' ') + ':') if seckey != '': seckey = bytes.fromhex(seckey) pubkey_actual = pubkey_gen(seckey) if pubkey != pubkey_actual: print(' * Failed key generation.') print(' Expected key:', pubkey.hex().upper()) print(' Actual key:', pubkey_actual.hex().upper()) aux_rand = bytes.fromhex(aux_rand) sig_actual = schnorr_sign(msg, seckey, aux_rand) if sig == sig_actual: print(' * Passed signing test.') else: print(' * Failed signing test.') print(' Expected signature:', sig.hex().upper()) print(' Actual signature:', sig_actual.hex().upper()) all_passed = False result_actual = schnorr_verify(msg, pubkey, sig) if result == result_actual: print(' * Passed verification test.') else: print(' * Failed verification test.') print(' Expected verification result:', result) print(' Actual verification result:', result_actual) if comment: print(' Comment:', comment) all_passed = False print() if all_passed: print('All test vectors passed.') else: print('Some test vectors failed.') return all_passed # # The following code is only used for debugging # import inspect def pretty(v): if isinstance(v, bytes): return '0x' + v.hex() if isinstance(v, int): return pretty(bytes_from_int(v)) if isinstance(v, tuple): return tuple(map(pretty, v)) return v def debug_print_vars(): if DEBUG: frame = inspect.currentframe().f_back print(' Variables in function ', frame.f_code.co_name, ' at line ', frame.f_lineno, ':', sep='') for var_name, var_val in frame.f_locals.items(): print(' ' + var_name.rjust(11, ' '), '==', pretty(var_val)) if __name__ == '__main__': test_vectors()