From 6a790ec52635a7aa52cc2c20dc25a9236daae5f8 Mon Sep 17 00:00:00 2001 From: Ethan Heilman Date: Thu, 14 Dec 2023 23:47:50 -0500 Subject: Removes space in ref Co-authored-by: kallewoof --- bip-???-cat.mediawiki | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/bip-???-cat.mediawiki b/bip-???-cat.mediawiki index 32595c3..cd952c8 100644 --- a/bip-???-cat.mediawiki +++ b/bip-???-cat.mediawiki @@ -31,7 +31,7 @@ OP_CAT aims to expands the toolbox of the tapscript developer with a simple, mod * Tree Signatures provide a multisignature script whose size can be logarithmic in the number of public keys and can encode spend conditions beyond n-of-m. For instance a transaction less than 1KB in size could support tree signatures with a thousand public keys. This also enables generalized logical spend conditions. P. Wuille, "Multisig on steroids using tree signatures", 2015, https://blog.blockstream.com/en-treesignatures/ * Post-Quantum Lamport Signatures in Bitcoin transactions. Lamport signatures merely require the ability to hash and concatenate values on the stack. J. Rubin, "[bitcoin-dev] OP_CAT Makes Bitcoin Quantum Secure [was CheckSigFromStack for Arithmetic Values]", 2021, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-July/019233.html * Non-equivocation contracts T. Ruffing, A. Kate, D. Schröder, "Liar, Liar, Coins on Fire: Penalizing Equivocation by Loss of Bitcoins", 2015, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.727.6262&rep=rep1&type=pdf in tapscript provide a mechanism to punish equivocation/double spending in Bitcoin payment channels. OP_CAT enables this by enforcing rules on the spending transaction's nonce. The capability is a useful building block for payment channels and other Bitcoin protocols. -* Vaults M. Moser, I. Eyal, and E. G. Sirer, Bitcoin Covenants, http://fc16.ifca.ai/bitcoin/papers/MES16.pdf which are a specialized covenant that allows a user to block a malicious party who has compromised the user's secret key from stealing the funds in that output. As shown in A. Poelstra, "CAT and Schnorr Tricks II", 2021, https://www.wpsoftware.net/andrew/blog/cat-and-schnorr-tricks-ii.html OP_CAT is sufficent to build vaults in Bitcoin. +* Vaults M. Moser, I. Eyal, and E. G. Sirer, Bitcoin Covenants, http://fc16.ifca.ai/bitcoin/papers/MES16.pdf which are a specialized covenant that allows a user to block a malicious party who has compromised the user's secret key from stealing the funds in that output. As shown in A. Poelstra, "CAT and Schnorr Tricks II", 2021, https://www.wpsoftware.net/andrew/blog/cat-and-schnorr-tricks-ii.html OP_CAT is sufficent to build vaults in Bitcoin. * Replicating CheckSigFromStack A. Poelstra, "CAT and Schnorr Tricks I", 2021, https://medium.com/blockstream/cat-and-schnorr-tricks-i-faf1b59bd298 which would allow the creation of simple covenants and other advanced contracts without having to presign spending transactions, possibly reducing complexity and the amount of data that needs to be stored. Originally shown to work with Schnorr signatures, this result has been extended to ECDSA signatures R. Linus, "Covenants with CAT and ECDSA", 2023, https://gist.github.com/RobinLinus/9a69f5552be94d13170ec79bf34d5e85#file-covenants_cat_ecdsa-md. The opcode OP_CAT was available in early versions of Bitcoin. However OP_CAT was removed because it enabled the construction of a script for which an evaluation could have memory usage exponential in the size of the script. -- cgit v1.2.3